• Title/Summary/Keyword: THz time-domain spectroscopy

Search Result 58, Processing Time 0.029 seconds

Analysis of the THz Resonance Characteristics of H-shaped Metamaterials with Varying Width

  • Ryu, Han-Cheol
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • The resonance characteristics of H-shaped metamaterials, whose widths were varied while keeping the height constant, were investigated in the terahertz (THz) frequency range. The H-shaped metamaterials were numerically analyzed in two modes in which the polarization of the incident THz electric field was either parallel or perpendicular to the width of the H-shaped structure. The resonant frequency of the metamaterial changed stably in each mode, even if only the width of the H shape was changed. The resonant frequency of the metamaterial operating in the two modes increases without significant difference regardless of the polarization of the incident electromagnetic wave as the width of the H-shaped metamaterial increases. The electric field distribution and the surface current density induced in the metamaterial in the two modes were numerically analyzed by varying the structure ratio of the metamaterial. The numerical analysis clearly revealed the cause of the change in the resonance characteristics as the width of the H-shaped metamaterial changed. The efficacy of the numerical analysis was verified experimentally using the THz-TDS (time-domain spectroscopy) system. The experimental results are consistent with the simulations, clearly demonstrating the meaningfulness of the numerical analysis of the metamaterial. The analyzed resonance properties of the H-shaped metamaterial in the THz frequency range can be applied for designing THz-tunable metamaterials and improving the sensitivity of THz sensors.

Detection of Fine Delamination in Glass Fiber Reinforced Polymer Analyzing Full Width Half Maximum of Superimposed Terahertz Signal (테라헤르츠 중첩 신호의 FWHM 분석을 통한 유리섬유 복합재료 내부 미세 박리 검출 기술)

  • Kim, Heon-Su;Park, Dong-Woon;Kim, Sang-Il;Kim, Hak-Sung
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.143-147
    • /
    • 2021
  • Full width half maximum (FWHM) analysis of superimposed terahertz (THz) signals in the glass fiber reinforced polymer (GFRP) was studied to detect fine delamination inside GFRP. The THz signals were measured for each fine delamination size inside the GFRP using the reflection mode of the terahertz time domain spectroscopy (THz-TDS) system. Then, the FWHM of the superimposed THz signal reflected at the fine delamination was extracted. Thereafter, the complex refractive index of the GFRP was measured using transmission mode of the THzTDS system. Based on this, the FWHM of the superimposed THz signal at the fine delamination were calculated and compared with respect to the fine delamination size. From the theoretically calculated superimposed signals, the relationship between the fine delamination size and the FWHM in the superimposed THz signal was derived. Consequently, the fine delamination size could be predicted through the analysis of the FWHM extracted from the THz signal at the fine delamination.

Dual-band Frequency Selective Surface Bandpass Filters in Terahertz Band

  • Qi, Limei;Li, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.673-678
    • /
    • 2015
  • Terahertz dual-band frequency selective surface filters made by perforating two different rectangular holes in molybdenum have been designed, fabricated and measured. Physical mechanisms of the dual-band resonant responses are clarified by three differently configured filters and the electric field distribution diagrams. The design process is straightforward and simple according to the physical concept and some formulas. Due to the weak coupling between the two neighboring rectangle holes with different sizes in the unit cell, good dual-band frequency selectivity performance can be easily achieved both in the lower and higher bands by tuning dimensions of the two rectangular holes. Three samples are fabricated, and their dual-band characteristics have been demonstrated by a THz time-domain spectroscopy system. Different from most commonly used metal-dielectric structure or metal-dielectric-metal sandwiched filters, the designed dual-band filters have advantages of easy fabrication and low cost, the encouraging results afforded by these filters could find their applications in dual-band sensors, THz communication systems and other emerging THz technologies.

Broad Dual-band Metamaterial Filter with Sharp Out-of-band Rejections

  • Qi, Limei;Shah, Syed Mohsin Ali
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.629-634
    • /
    • 2018
  • A broad dual-band terahertz metamaterial filter with sharp out-of-band rejections is designed and demonstrated. The center frequencies of the first and the second bands occur at 0.35 THz and 0.96 THz with 3 dB relative bandwidth of 31% and 17%, respectively. Results are measured using a THz time-domain spectroscopy system that shows agreement with simulations. Physical mechanisms of the broad dual-band resonance are clarified based on transmissions of different structures and surface current density distributions. Influence of structure parameters on the transmission characteristics are discussed. Symmetry of the structure ensures the filter polarization independence at normal incidence. These results supported by the design of the filter could find applications in broad multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.

The Doping Concentration and Physical Properties Measurement of Silicon Wafer Using Terahertz Wave (테라헤르츠파를 이용한 실리콘 웨이퍼의 도핑 정도와 물리적 특성 측정에 관한 연구)

  • Park, Sung Hyeon;Oh, Gyung Hwan;Kim, Hak Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this study, a terahertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of $30^{\circ}$ were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from $10^{14}$ to $10^{18}$ in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

Optical and Dielectric Properties of Chalcogenide Glasses at Terahertz Frequencies

  • Kang, Seung-Beom;Kwak, Min-Hwan;Park, Bong-Je;Kim, Sung-Il;Ryu, Han-Cheol;Chung, Dong-Chul;Jeong, Se-Young;Kang, Dae-Won;Choi, Sang-Kuk;Paek, Mun-Cheol;Cha, Eun-Jong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.667-674
    • /
    • 2009
  • Terahertz time-domain spectroscopy has been used to study the optical and dielectric properties of three chalcogenide glasses: $Ge_{30}As_8Ga_2Se_{60}$, $Ge_{35}Ga_5Se_{60}$, and $Ge_{10}As_{20}S_{70}$. The absorption coefficients ${\alpha}({\nu})$, complex refractive index n(${\nu}$), and complex dielectric constants ${\varepsilon}({\nu})$ were measured in a frequency range from 0.3 THz to 1.5 THz. The measured real refractive indices were fitted using a Sellmeier equation. The results show that the Sellmeier equation fits well with the data throughout the frequency range and imply that the phonon modes of glasses vary with the glass compositions. The theory of far-infrared absorption in amorphous materials is used to analyze the results and to understand the differences in THz absorption among the sample glasses.

Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

  • Siyu Qian;Bo Peng;Boyan Zhang;Jingyi Shu;Zhuang Peng;Bo Su;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.86-96
    • /
    • 2024
  • This research investigation employs a terahertz (THz) time-domain spectroscopy system to study the terahertz spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization

  • Cha, Sung Ho;Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.566-570
    • /
    • 2019
  • To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.637-641
    • /
    • 2017
  • We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.