• 제목/요약/키워드: THz application

검색결과 20건 처리시간 0.039초

식품의 품질 및 안전 관리를 위한 테라헤르츠 분광/영상 기술의 응용 (Application of terahertz spectroscopy/imaging technology for food quality and safety management)

  • 이상유;우소영;전향숙
    • 식품과학과 산업
    • /
    • 제51권1호
    • /
    • pp.26-36
    • /
    • 2018
  • Terahertz (THz) represents the portion of the electromagnetic radiation between the microwave and the infrared region and is within the frequency range of 0.1-10 THz. The ability of THz waves to pass through a wide variety of packaging materials, combined with their ability to characterize the molecular structure of many substances makes it an attractive tool for the application of food quality and safety management. This review provides current information on application of THz spectroscopy/imaging technology for food quality and safety management. The THz spectroscopy/imaging technology has been shown to be useful for detecting foreign bodies, vitamin/moisture, pesticides, antibiotics, melamine etc. However, major barriers to the adoption of THz spectroscopy/imaging for food quality and safety management include THz signal loss in heterogeneous food matrices, high costs of sources and detectors, and absence of a library for the wide group of food compounds. Further research is needed to overcome these barriers.

광전도안테나에 의한 광대역테라헤르츠파의 발생특성 (Generation of Ultra-Wideband Terahertz Pulse by Photoconductive Antenna)

  • 진윤식;김근주;손채화;정순신;김지현;전석기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.286-292
    • /
    • 2005
  • Terahertz wave is a kind of electromagnetic radiation whose frequency lies in 0.1THz $\~$10THz range. In this paper, generation and detection characteristics of terahertz (THz) radiation by photoconductive antenna (PCA) method has been described. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer. A mode-locked Ti:Sapphire femtosecond laser beam is guided and focused onto photoconductive antennas (emitter and detector) to generate and measure THz pulses. Ultra-wide band THz radiation with frequencies between 0.1 THz and 3 THz was observed. Terahertz field amplitude variation with antenna bias voltage, pump laser power, pump laser wavelength and probe laser power was investigated. As a primary application example. a live clover leaf was imaged with the terahertz radiation.

An Investigation of the Terahertz Absorption Characteristics of a Graphene Oxide Aqueous Solution Using Microfluidic Technology

  • Ningyi Cai;Boyan Zhang;Qinghao Meng;Siyu Qian;Bo Su;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 2023
  • The vibratory and rotational levels of many biological macromolecules lie in the terahertz (THz) band, which means that THz techniques can be used to identify and detect them. Moreover, since the biological activity of most biomolecules only becomes apparent in aqueous solution, we use microfluidic technology to study the biological properties of these biomolecules. THz time-domain spectroscopy was used to study the THz absorption characteristics of graphene oxide (GO) aqueous solution at different concentrations and different exposure times in fixed electric or magnetic fields. The results show that the spectral characteristics of the GO solution varied with the concentration: as the concentration increased, the THz absorption decreased. The results also show that after placing the solution in an external electric field, the absorption of THz first increased and then decreased. When the solution was placed in a magnetic field, the THz absorption increased with the increase in standing time. In this paper, these results are explained based on considerations of what is occurring at the molecular scale. The results of this study provide technical support for the further study of GO and will assist with its improved application in various fields.

광대역 테라헤르츠 검출 소자 기술 동향 (Trends in Broadband Terahertz Detector Technology)

  • 신준환;최다혜;이의수;문기원;박동우;주경일;김무건;최경선;이일민;박경현
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.53-64
    • /
    • 2020
  • The terahertz (THz) region lies in between the millimeter and infrared spectral bands. A THz wave has the characteristics of non-invasiveness and non-ionization due to low photon energies, while having high penetrability in dielectrics. In addition, since the resonance frequencies of various molecules are included in the THz band, research on the application of spectral analysis and non-destructive testing has been widely studied. Towards this end, the research and development of THz detectors has become increasingly important in order to assess their applications in different areas such as astronomy, security, industrial non-destructive evaluations, biological applications, and wireless communications. In this report, we summarize the operating principles, characteristics, and utilization of various broadband technologies in THz detection devices. Further, we introduce the development status of our Schottky barrier diode technology as one of the broadband THz detectors that can be easily adopted as direct detectors in many fields of applications.

Performance Analysis of Multi-Gigabit Wireless Transmission at THz WLAN-Type Applications

  • Choi, Yonghoon
    • Journal of Communications and Networks
    • /
    • 제16권3호
    • /
    • pp.305-310
    • /
    • 2014
  • Optimal position of access point (AP) is important for multi-gigabit wireless transmission in terahertz (THz) wireless local area network (WLAN)-type applications, where there exist the THz characteristic multiple clusters in channel propagation. By considering the multiple clusters in THz indoor communications, this paper investigates the optimal AP position when two APs are issued for increasing the system capacity. Numerical results reveal that the central position of each AP within each half service region, which offers the shortest cumulated path length for line-of-sight paths, is optimal to achieve the maximal system capacity.

테라헤르츠 전자기 펄스의 반사특성을 이용한 굴절률 측정 (Index of refraction measurement using the reflection characteristics of terahertz electromagnetic pulses)

  • 전태인
    • 한국광학회지
    • /
    • 제12권1호
    • /
    • pp.1-4
    • /
    • 2001
  • 테라헤르츠 레이다를 이용하여 알루미늄 거울 및 도체와 부도체로 이루어진 각각의 물질에 대한 테라헤르츠 전자기 펄스의 반사특성을 측정하였다. 알루미늄 거울로부터 반사된 테라헤르츠 펄스의 크기변화를 측정하기 위하여 최고 9회까지 테라파를 반사시켜 펄스의 크기에 대한 변화가 없음을 확인하였다. 또한 알루미늄 거울의 반사각도에 대한 테라파의 영향을 측정하였다 알루미늄 거울에 대한 반사파를 reference로 하여 알루미늄 board, 순수실리콘, quartz, 그리고 LDPE 에 대한 테라파의 반사를 측정하여 각각의 물질에 대한 테라헤르츠 영역의 반사계수와 굴절률을 측정하였다. 이러한 측정법은 sample의 두께에 무관한 비접촉 테라헤르츠 분석법의 적용이라할 수 있다.

  • PDF

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

소형 CW Sub-THz 시스템을 이용한 테라헤르츠 이미징 (Terahertz Imaging Using Compact Continuous Wave Sub-Terahertz System)

  • 장진석;권일범;윤동진;서대철
    • 한국전자파학회논문지
    • /
    • 제21권4호
    • /
    • pp.340-351
    • /
    • 2010
  • 전기적인 장치를 기반으로 한 테라헤르츠 송신기(Terahertz Transmitter: Tx)를 이용하여 0.34 THz의 전자기파를 발생시키는 소형 CW sub-THz 이미징 시스템을 제시하였다. Tx에 의해 발생된 0.34 THz의 전자기파는 테라 헤르츠 수신기(Terahertz Receiver: Rx)를 이용하여 샘플의 진폭(magnitude)과 위상(phase) 정보를 각각 측정하였다. 이 논문에서는 보다 좋은 이미지 해상도를 얻기 위하여 데이터 수집 시 이미지의 분해능(resolution)에 영향을 미치는 주사 스테이지(scanning stage)의 시간 지연과 스텝 거리를 변수로 두어 다양한 샘플들을 주사하여 그 결과를 측정, 비교하였다. 또한 플라스틱, 종이, 나무 등 다양한 샘플들의 이미징 측정을 통해 테라헤르츠 파의 응용 가능성을 확인하였다.

소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징 (Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System)

  • 장진석;권일범;윤동진;서대철
    • 비파괴검사학회지
    • /
    • 제30권4호
    • /
    • pp.352-358
    • /
    • 2010
  • 전기적인 장치를 기반으로 한 테라헤르츠 송신기(terahertz transmitter; Tx)를 이용하여 0.34 THz의 전자기파를 발생시키는 소형 CW sub-THz 이미징 시스템을 제시하였다. Tx에 의해 발생된 0.34 THz의 전자기파를 point by point 스캔방식으로 샘플에 투과시켰고, 여기서 얻어진 데이터는 테라헤르츠 수신기(terahertz receiver; Rx)를 이용하여 진폭(magnitude)과 위상(phase) 정보로 측정한 후 이를 영상화하였다. 이 논문에서는 보다 좋은 이미지 해상도를 얻기 위하여 데이터 수집 시 이미지의 분해능(resolution)에 영향을 미치는 주사 스테이지(scanning stage)의 시간지연과 스텝거리를 변수로 두어 다양한 샘플들을 주사하여 그 결과를 측정, 비교하였다. 또한 플라스틱, 종이, 나무 등 다양한 샘플들의 이미징 측정을 통해 테라헤르츠 파의 응용 가능성을 확인하였다.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.