• Title/Summary/Keyword: THREE-DIMENSIONAL

Search Result 14,565, Processing Time 0.039 seconds

Mode Decomposition in Three Dimensional Cracks using Mutual Integrals

  • Kim, Young-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.14-23
    • /
    • 2000
  • A numerical scheme is proposed to obtain the individual stress intensity factors in an axisymmetric crack and in a three dimensional mixed mode crack. The method is based on the path independence of J and M integral and mutual or two-state conservation integral , which involves two elastic fields. Some numerical example are presented to investigate the effectiveness and applicability of the method for and axisymmetric crack and a three dimensional penny shaped crack problem under mixed mode.

  • PDF

Performance estimation model of the three-dimensional pointing tasks in virtual environment systems (가상환경에서의 3차원 포인팅작업 성능평가 모형)

  • 박재희;박경수
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.253-258
    • /
    • 1996
  • Virtual reality environment system is expected to be used as a new user interface tool oweing to its high immersiveness and high interactivity. To use VR interface effectively, we should identify the characteristics of the three-dimensional control tasks as if we did in two-dimensional graphic user interface environments. As a first step, we validated Fitts'law for the three-dimensional pointing tasks with the two input devices, Spaceball and Spacemouse. Different from the two-dimensional control tasks, VR pointing tasks needed inclusion of a new variable, size of the moving object, to Fitts'law. The modified

  • PDF

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

The Derivation of Generalized Quasi-Three Dimensional Displacement Field Equations for the Analysis of Composite Laminates (복합재료 적층판의 해석을 위한 일반화 준 3차원 변위식의 도출)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.21-27
    • /
    • 1998
  • In the case of existing in free-edge delaminations of composite laminates which are symmetry with respect to mid-plane in laminates also, in the case of asymmetry and anti-symmetry, the generalized quasi-three dimensional displacement field equations developed from quasi-three dimensional displacement field equations can be applied to solve above cases. We introduce three paramenters in this paper, which have not been used in quasi-three dimensional displacement field equations until now. To the laminate subjected to the axial extension strain $\varepsilon$0(C1) in $\chi$-direction, the bending deformation $\chi$$\chi$(C$_2$) around у-direction, the bending deformation w$\chi$(C$_4$) around z-direction and the twisting deformation $\chi$$\chi$y(C$_3$) around $\chi$-direction .The generalized quasi-three dimensional displacement field equations are able to be analyzed efectively.

Classification and Statement of Evaluating Objectives Using Three-Dimensional Assessment Framework of Science Inquiry (과학 탐구의 3차원 평가틀에 의한 평가 목표 분류 및 진술)

  • Woo, Jong-Ok;Cheong, Cheol
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.3
    • /
    • pp.270-277
    • /
    • 1996
  • The purpose of this study is to classify and state of evaluating objectives using three-dimensional assessment framework of science inquiry. The first, as an attempt to provide a theoretical base for developing an assessment framework taxonomies and classificatory schemes of educational objectives were analyzed Bloom's taxonomy, Klopfer's specification, NAEP(National Assessment of Educational Progress), and APU(Assessment of Performance Unit) framework. The second, three-dimensional assessment framework use in this study has formed a clear definition of three-dimensional matrix. These three dimensions consists of content, context and process. The third, the model of three-dimensional taxonomy of science inquiry developed in this study is presented. In addition, an example of classification and statement of evaluating objectives based on the model is presented.

  • PDF

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

EXTENSION OF MULTI-DIMENSIONAL LIMITING PROCESS ONTO THREE-DIMENSIONAL UNSTRUCTURED GRIDS (다차원 공간 제한 기법의 3차원 비정렬 격자계로 확장)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.404-411
    • /
    • 2010
  • The present paper deals with the continuous work of extending multi-dimensional limiting process (MLP), which has been quite successfully proposed on two- and three-dimensional structured grids, onto the unstructured grids. The basic idea of the present limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic a multi-dimensional nature of flow physics, which can be formulated as so called the MLP condition. The MLP condition can guarantee a high-order spatial accuracy without yielding spurious oscillations. Recently, MLP slope limiter was proposed based on the MUSCL-type reconstruction in two-dimensional case and it can be readily extended to three-dimensional case. Through various numerical analyses and extensive computations, it is observed that the proposed limiters are quite effective in controlling numerical oscillations and very accurate in capturing both discontinuous and continuous multi-dimensional flow features on 3-D tetrahedral grids.

  • PDF

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF