• Title/Summary/Keyword: THP-1 macrophage cells

Search Result 51, Processing Time 0.026 seconds

Immunostimulating Effect of Mycelium Extract of Phellinus linteus (상황버섯 균사체 추출물의 면역증진 효능)

  • Lee, Byung-Eui;Ryu, Shi-Yong;Kim, Eui-Han;Kim, Young-Hee;Kwak, Kyung-A;Song, Ho-Yeon
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • In order to investigate the immunostimulating effect of mycelia extract of Phellinus linteus (PLM) on human monocyte THP-1 and rat peritoneal macrophage cell, we examined measuring cytokine secretion (IL-6 and TNF-${\alpha}$). The production of IL-6 and TNF-a in human monocyte THP-1 was slight increased dose-dependently when the cells were challenged with PLM for 72 hrs. It was also observed that the treatment of PLM with LPS augmented the production of IL-6 and TNF-a in human monocyte THP-1. It was also observed that the treatment of PLM with LPS augmented the production of IL-6 and TNF-${\alpha}$ in human monocyte THP-1. The production of IL-6 and TNF-${\alpha}$ in rat peritoneal macrophage was significantly enhanced when the cells were treated PLM with LPS for 72 hrs. Moreover, the proliferation rate of rat spleen cells was increased in a dose dependent manner as the cells were treated with PLM and Concanavalin A.

Genes Related to Intracellular Survival of Brucella abortus in THP-1 Macrophage Cells

  • Shim, Soojin;Im, Young Bin;Jung, Myunghwan;Park, Woo Bin;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1736-1748
    • /
    • 2018
  • Brucella abortus can survive and replicate within host macrophages, and great efforts have been made to demonstrate the genes involved in pathogenicity, such as internalization, in Brucella research. Here, intracellular responses were compared between THP-1 macrophage cells stimulated with B. abortus wild-type and four mutants (C1, C10, C27, and C32) using microarray to demonstrate the role of genes related to intracellular survival and replication. These mutants were generated by deleting genes encoding BAB_RS13225 (4-hydrobenzoate 3-monooxygenase, PHBH), BAB_RS00455 (heme exporter protein cytochrome C, CcmC), BAB_RS03675 (exopolyphosphatase, PPX), and BAB_RS13225 (peptidase M24). The results showed that mutants C1 and C10 induced significant suppression of survival levels and cytokine expression relative to wild-type in the THP-1 macrophage cells. These findings suggest that the BAB_RS13225 and BAB_RS00455 genes play important roles in survival within human macrophages. Conversely, mutants C27 and C32 induced significantly higher survival level than wild-type in the cells inhibiting cellular signal transduction. It is assumed that the BAB_RS03675 and BAB_RS13225 genes play a role in cellular resistance to B. abortus. Therefore, the disrupted genes are involved in B. abortus intracellular growth, and especially in its survival, and they could be effective targets for understanding the intracellular bacterium, B. abortus.

Cell to Cell Interaction Can Activate Membrane-bound APRIL Which Are Expressed on Inflammatory Macrophages

  • Lee, Sang-Min;Kim, Won-Jung;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.173-180
    • /
    • 2010
  • Background: APRIL, originally known as a cytokine involved in B cell survival, is now known to regulate the inflammatory activation of macrophages. Although the signal initiated from APRIL has been demonstrated, its role in cellular activation is still not clear due to the presence of BAFF, a closely related member of TNF superfamily, which share same receptors (TACI and BCMA) with APRIL. Methods: Through transfection of siRNA, BAFF-deficient THP-1 cells (human macrophage-like cells) were generated and APRIL-mediated inflammatory activities were tested. The expression patterns of APRIL were also tested in vivo. Results: BAFF-deficient THP-1 cells responded to APRIL-stimulating agents such as monoclonal antibody against APRIL and soluble form of TACI or BCMA. Furthermore, co-incubation of the siBAFF-deficient THP-1 cells with a human B cell line (Ramos) resulted in an activation of THP-1 cells which was dependent on interactions between APRIL and TACI/BCMA. Immunohistochemical analysis of human pathologic samples detected the expression of both APRIL and TACI in macrophage-rich areas. Additionally, human macrophage primary culture expressed APRIL on the cell surface. Conclusion: These observations indicate that APRIL, which is expressed on macrophages in pathologic tissues with chronic inflammation, may mediate activation signals through its interaction with its counterparts via cell-to-cell interaction.

Triglyceride Regulates the Expression of M1 and M2 Macrophage-specific Markers in THP-1 Monocytes

  • Kim, Hyun-Kyung;Kim, Sung Hoon;Kang, Yeo Wool;Kim, Bohee;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.220-226
    • /
    • 2016
  • Hypertriglyceridemia induces atherosclerosis and accordingly is a major causative factor in cardiovascular diseases. Macrophages that develop into foam cells are a crucial component in the development of atherosclerosis. Monocytes can be differentiated into M1 or M2 macrophages. M1 macrophages promote inflammatory responses, whereas M2 macrophages exhibit anti-inflammatory activity. Recently, we found that triglyceride (TG)-treated THP-1 monocytes express a variety of macrophage-specific surface markers, indicating that TG treatment could trigger the differentiation of monocytes into macrophages. In this study, we investigated whether TG-induced macrophages express the M1 or the M2 macrophage phenotype. THP-1 cells were treated with various concentrations of TG for different times and the expression of M1- and M2-specific markers was evaluated by RT-PCR. We found increased expression of M1 markers (CD40, CD80, and CD86) in TG-treated THP-1 cells in a TG dose- and time-dependent manner. The expression of M2 markers (CD163, CD200R, and CD206) showed variable responses to TG treatment. Taken together, our results indicate that TG treatment triggers the differentiation of monocytes into M1 macrophages, rather than into M2 macrophages, suggesting that TG contributes to pro-inflammatory responses.

Protease-activated Receptor 2 is Associated with Activation of Human Macrophage Cell Line THP-1

  • Kang, Chon-Sik;Tae, Jin;Lee, Young-Mi;Kim, Byeong-Soo;Moon, Woo-Sung;Kim, Dae-Ki
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.193-198
    • /
    • 2005
  • Background: Protease-activated receptor 2 (PAR2) belongs to a family of G protein coupled receptors activated by proteolytic cleavage. Trypsin-like serine proteases interact with PAR2 expressed by a variety of tissues and immune cells. The aim of our study was to investigate whether PAR2 stimulation can lead to the activation of human mac rophages. Methods: PAR2-mediated proliferation of human macrophage cell line THP-1 was measured with MTT assay. We also examined the extracellular regulated kinase (ERK) phosphorylation and cytokine production induced by trypsin and PAR2-agonist using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Results: Treatment of trypsin or PAR2-activating peptide increased cell proliferation in a dose-dependent manner, and induced the activation of ERK1/2 in THP-1 cells. In addition, trypsin-induced cell proliferation was inhibited by pretreatment of an ERK inhibitor (pD98059) or trypsin inhibitor (SBTI). Moreover, PAR2 activation by trypsin increased the secretion of TNF-${\alpha}$ in THP-1 cells. Conclusion: There results suggest that P AR2 activation by trypsin-like serine proteases can induce cell proliferation through the activation of ERK in human macrophage and that PAR2 may playa crucial role in the cell proliferation and cytokine secretion induced by trypsin-like serine proteases.

Ursodeoxycholic Acid Inhibits Inflammatory Cytokine Expression in THP-1 Cells Infected with Aggregatibacter actinomycetemcomitans

  • Song, YuRi;Kim, SeYeon;Park, Mee Hee;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Background: Periodontitis is an inflammatory disease characterized by the breakdown of tooth-supporting tissues, leading to tooth loss. Aggregatibacter actinomycetemcomitans are major etiologic bacterium causing aggressive periodontitis. Ursodeoxycholic acid (UDCA), a hydrophilic gall bladder acid, has been used as an effective drug for various diseases related to immunity. The aim of this study was to investigate the effect of UDCA on the inflammatory response induced by A. actinomycetemcomitans. Methods: A human acute monocytic leukemia cell line (THP-1) was differentiated to macrophage- like cells by treatment with phorbol 12-mystristate 13-acetate (PMA) and used for all experiments. The cytotoxic effect of UDCA was examined by MTT assay. THP-1 cells were pretreated with UDCA for 30 min before A. actinomycetemcomitans infection and the culture supernatant was analyzed for various cytokine production by ELISA. The effect of UDCA on bacterial growth was examined by measuring optical densities using a spectrophotometer. Results: UDCA showed no cytotoxic effect on THP-1 cells, up to $80{\mu}M$ Ed highlight: Please confirm technical meaning. UDCA pretreatment inhibited the A. actinomycetemcomitans-induced $IL-1{\beta}$, $TNF-{\alpha}$, and IL-17A secretion in a dose-dependent manner. UDCA also inhibited IL-21 production at $60{\mu}M$. The production of IL-12 and IL-4 was not influenced by A. actinomycetemcomitans infection. Conclusion: These findings indicate that UDCA inhibits the production of inflammatory cytokines involved in innate and Th17 immune responses in A. actinomycetemcomitans-infected THP-1- derived macrophages, which suggests its possible use for the control of aggressive periodontitis.

Chracterization of THP-1 Cell Death Induced by Porphyromonas gingivalis Infection

  • Song, YuRi;Kim, SeYeon;Park, Mee Hee;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Background: Periodontitis is generally a chronic disorder characterized by the breakdown of tooth-supporting tissues. P. gingivalis, a Gram-negative anaerobic rod, is one of the major pathogens associated with periodontitis. Frequently, P. gingivalis infection leads to cell death. However, the correlation between P. gingivalis-induced cell death and periodontal inflammation remains to be elucidated. Among cell deaths, the death of immune cells appears to play a significant role in inflammatory response. Thus, the aim of this study was to examine P. gingivalis-induced cell death, focusing on autophagy and apoptosis in THP-1 cells. Methods: Human acute monocytic leukemia cell line (THP-1) was used for all experiments. Autophagy induced by P. gingivalis in THP-1 cells was examined by Cyto ID staining. Intracellular autophagic vacuoles were observed by fluorescence microscopy using staining Acridine orange (AO); and 3-methyladenine (3-MA) was used to inhibit autophagy. Total cell death was measured by LDH assay. Cytokine production was measured by an ELISA method. Results: P. gingivalis induced autophagy in an MOI-dependent manner in THP-1 cells, but 3-MA treatment decreased autophagy and increased the apoptotic blebs. P. gingivalis infection did not increase apoptosis compared to the control cells, whereas inhibition of autophagy by 3-MA significantly increased apoptosis in P. gingivalis-infected THP-1 cells. Inhibition of autophagy by 3-MA also increased total cell deaths and inflammatory cytokine production, including $IL-1{\beta}$ and $TNF-{\alpha}$. Conclusion: P. gingivalis induced autophagy in THP-1 cells, but the inhibition of autophagy by 3-MA stimulated apoptosis, leading to increased cell deaths and pro-inflammatory cytokines production. Hence, the modulation of cell deaths may provide a mechanism to fight against invading microorganisms in host cells and could be a promising way to control inflammation.

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

  • Song, Kyoung-Ju;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • $Toxoplasma$ $gondii$ penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with $T.$ $gondii$ through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of $T.$ $gondii$-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with $T.$ $gondii$ disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that $T.$ $gondii$ induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.

Chemokine Lkn-1/CCL15 enhances matrix metalloproteinase-9 release from human macrophages and macrophage-derived foam cells

  • Kwon, Sang-Hee;Ju, Seong-A;Kang, Ji-Hye;Kim, Chu-Sook;Yoo, Hyeon-Mi;Yu, Ri-Na
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.134-137
    • /
    • 2008
  • Atherosclerosis is characterized by a chronic inflammatory disease, and chemokines play an important role in both initiation and progression of atherosclerosis development. Leukotactin-1 (Lkn-1/CCLl5), a new member of the human CC chemokine family, is a potent chemoattractant for leukocytes. Our previous study has demonstrated that Lkn-1/CCL15 plays a role in the initiation of atherosclerosis, however, little is currently known whether Lkn-1/CCL15 is associated with the progression of atherosclerosis. Matrix metalloproteinases (MMPs) in human coronary atherosclerotic lesions playa crucial role in the progression of atherosclerosis by altering the vulnerability of plaque rupture. In the present study, we examined whether Lkn-1/CCLl5 modulates MMP-9 release, which is a prevalent form expressed by activated macrophages and foam cells. Human THP-1 monocytic cells and/or human peripheral blood monocytes (PBMC) were treated with phorbol myristate acetate to induce their differentiation into macrophages. Foam cells were prepared by the treatment of THP-1 macrophages with human oxidized LDL. The macrophages and foam cells were treated with Lkn-1/CCL15, and the levels of MMP-9 release were measured by Gelatin Zymography. Lkn-1/CCL15 significantly enhanced the levels of MMP-9 protein secretion from THP-1 monocytic cells-derived macrophages, human PBMC-derived macrophages, as well as macrophage-derived foam cell in a dose dependent manner. Our data suggest that the action of Lkn-1/CCL15 on macrophages and foam cells to release MMP-9 may contribute to plaque destabilization in the progression of atherosclerosis.

Interleukin-8 production and interleukin-8 mRNA expression induced by lipopolysaccharides from Prevotella intermedia and Prevotella nigrescens in monocyte-derived macrophages (Prevotella intermedia 및 Prevotella nigrescens의 지질다당질이 대식 세포에서의 Interleukin-8 생성에 미치는 영향)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.177-184
    • /
    • 2009
  • Purpose: Interleukin-8 (IL-8) is an important mediator of immune and inflammatory reactions and is produced by a variety of different cell types. This study was undertaken to investigate the effects of lipopolysaccharides (LPSs) from Prevotella intermedia and Prevotella nigrescens, the major causes of inflammatory periodontal disease, on the production of IL-8 and the expression of IL-8 mRNA in differentiated THP-1 cells, a human monocytic cell line. Methods: LPSs from P. intermedia ATCC 25611 and P. nigrescens ATCC 33563 were prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. Results: We found that LPS preparations from P. intermedia and P. nigrescens can induce IL-8 mRNA expression and stimulate the release of IL-8 in differentiated THP-1 cells without additional stimuli. Conclusions: There are no previous reports of the ability of P. intermedia and P. nigrescens LPS to stimulate the release of IL-8, and the present study clearly shows, for the first time, that LPSs from P. intermedia and P. nigrescens fully induced IL-8 mRNA expression and IL-8 production in differentiated human monocytic cell line THP-1. The ability of P. intermedia and P. nigrescens LPS to promote the production of IL-8 may be important in the pathogenesis of inflammatory periodontal disease.