• 제목/요약/키워드: THM precursor

검색결과 7건 처리시간 0.023초

THM(trihalomethane)제거(除去) 대책(對策)에 관(關)한 연구(硏究) (A Study on the Removal of THM(trihalomethane))

  • 이석헌;황선진;박중현
    • 상하수도학회지
    • /
    • 제7권2호
    • /
    • pp.34-38
    • /
    • 1993
  • An experimental study was conducted to investigate the effects of chlorine dioxide and ozone on reduction of THM(trihalomethane) formation. Precursor concentration, chlorine concentration, reaction time, pH, and temperature were governing compornents of THM formation. When other conditions are constant, THM formation increased linearly with precursor concentration increased. THM formation increased when pH increased from 5 to 9. In combined treatment with chlorine and chlorine dioxide, chlorine treatment after chlorine dioxide treatment made less THM than any other case does. Ozonation reduced THMFP(THM formation potential) of THM precursor. THMFP decreased exponentially with reaction time increased. Also biodegradability of humic acid was enhanced by ozonation.

  • PDF

정수처리공정에서 $TiO_2$광촉매를 이용한 THM전구물질 제거에 관한 연구 (Degradation of THM precursor using $TiO_2$ photocatalytic oxidation in the water treatment processes)

  • 조덕희;서수만
    • 환경위생공학
    • /
    • 제19권2호
    • /
    • pp.1-6
    • /
    • 2004
  • In Bok-Jeong water treatment plant, chlorination is the only technique used for disinfection of drinking water. This disinfecting treatment leads to the formation of trihalomethanes (THMs). This study was carried out to investigate the possibility of improving removal efficiency of THM precursor in the conventional water treatment processes by $TiO_2$ photocatalytic oxidation. Removal efficiencies of DOC, $UV_{254}$, THMFP were low in the conventional water treatment processes. With application of $TiO_2$ photocatalyst, DOC, $UV_{254}$, THMFP were reduced more effectively. As the $TiO_2$ photocatalytic reaction time increased, the removal efficiencies of DOC, $UV_{254}$, THMFP were increased. The $TiO_2$ photocatalytic removal efficiencies of DOC, $UV_{254}$, THMFP were increased with increasing $TiO_2$ dosage. However, over 0.6g/l of $TiO_2$ dosage, the efficiency reached a plateau.

브롬이온을 함유한 상수 원수에 이산화염소 주입시 THM생성거동에 관한 연구 (Trihalomethane Formation by Chlorine Dioxide in Case of Water Containing Bromide Ion)

  • 이윤진;이환;남상호
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.83-88
    • /
    • 1999
  • This study was carried out to examine the behavior of THM formation in water treated with chlorine dioxide where humic acid was used as THM precursor. THM was not detected in bromide-free water, but formed in water containing bromide. When 10 mg/l of chlorine dioxide was added to water containing 5 mg/l of humic acid and bromide respectively, 20.46 ${\mu}$g/l of THM was formed. It is postulated that chlorine dioxide oxidize bromide to hydrobromous acid, which subsequently reacted with humic acids similar to chlorine reaction. The formation of THM could be reduced at low pH. Among THM formed, CHBr$_3$ was the predominant species in the alkaline solution, while CHCl$_3$ in the acidic solution. A sample pretreated with chlorine dioxide for 24h before addition of chlorine showed a reduction of 75.1% in THM formation, compared with a sample not pretreated with chlorine dioxide and a sample treated by chlorine for 24h prior to addition of chlorine dioxide also showed a reduction of 37.8% in THM formation, compared with a sample not added with chlorine dioxide. It may explain that chlorine dioxide oxidizes directly a fraction of THM.

  • PDF

녹조류(Chlamydomonas pulsatilla)에 의한 염소소독부산물 생성과 그 특성 (Characterization of Disinfection By-Products by Chlamydomonas pulsatilla)

  • 금희정;김준성;정용
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.535-540
    • /
    • 2005
  • This study was conducted to evaluate the chlorinated disinfection by-products formation potential (DBPFP) produced from the cell and extracellular product (ECP) of Chlamydomonas pulsatilla after chlorination. Reaction yields of DBPs produced by C. pulsatilla of ECP and the cell were $0.007{\mu}mol/mg{\cdot}C$ and $0.808{\mu}mol/mg{\cdot}C$ respectively, Also, SUVA values of ECP and the cell were measured as $0.313L/mg{\cdot}m$ and $1.052L/mg{\cdot}m$ respectively, The DOC of cell was found to be lower than that of ECP, while the SUVA value and reaction yields for the cell were higher than those of ECP. For ECP, most of the DBPFP was composed of trihalomethanes (THM; 47.3%) and haloacetonitriles (HAN; 38,83%). THM and HAN were the major DBPFP produced by the cell. Chloroform was found to be the major THM compound; 98.3% for ECP and 99.98% for the cell. Dichloroacetic acid (DCAA) and dichloroacetonitrile (DCAN) were identified as the major haloacetic acid (HAA) and HAN compounds formed by ECP and the cell as a precursor, respectively. As the chlorine dose was increased, concentrations of DOC, THMs, and HANs were increased. However, the chlorine dose decreased the concentration of chlorophyll-a.

The Effect of Porosity of Seiving Particles on the Romoval Efficiency of Organic Substances via Biofilter in the Fixed Bed

  • Park Young Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권1호
    • /
    • pp.31-37
    • /
    • 2002
  • This paper was investigated to clarify the possibility of a biodegradation of materials adsorbed on different porous granular-activated carbons (GACs) such as coal-& coconut-based GAC. Total organic carbon, humic substance and ammonia were used to compare their removal efficiencies. The objective of this study is to determine the adsorption capacity of bioregenerated GAC. When raw water reacted with chloride, the yield of THMs increased as a function of the input amount of chloride. The formation of trihalomethanes (THMs) was investigated in water treated with chlorine when humic acid was used as THM precursor. As the input amount of chloride in raw water increased by two or five-fold to remove the $NH_3$, the chloroform of the THMs significantly increased also five or ten-fold. It was found that the chloroform was significantly removed by the treatment of biological activated carbon (BAG) in comparison with the ozone treatment, and the removal efficiency of THMs in coal-typed GAC was $10-30\%$ better than coconut-typed GAC due to the biological degradation on the surface of the activated carbons.

Humic acid 제거를 위한 국산 입상활성탄의 흡착성능 평가에 관한 연구 (A Study on Evaluation of Adsorption Performance of Humic Acid on Granular Activated Carbon)

  • 신성교;김종구;박청길
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.73-81
    • /
    • 1993
  • Adsorption process using granular activated carbon(GAC) has been considered as one of the most effective water treatment technologies to remove humic acid which is recon- niEed as trihalomethane(THM) precursor in chlorination. To design the most effective GAC process, it is necessary to conduct the test of adsor- ption performance by means of isothem, batch rate and column studies and to select the most effective activated carbon according to raw materials of GAC - lignite and coconut shell. The objective of this study is to investigate the adsorption performance of humid acid on two activated carbons - lignite activated carbon(LAC) and coconut shell activated car- bon(CAC) made in Korea. It is available to represent UV-abs and trihalomethane formation potential(THMFP) as concentration of humic acid due to good relationship. The adsorption capacity of humid acid is not concerned with surface area of activated carbon but with pore size related to about $100{\AA}$, and then LAC forming at the extent of mesopore is found to be eight times more effective in adsorption capacity than CAC forming at micropore. The adsorption capacity of LAC and CAC is better at pH 5.5 than at pH 7. Pore and surface diffusion coefficients calculated from the diffusion model are $7.61\times10^{-13}m^2/sec$, $3.52\times10^{-15}m^2/sec$ for CAC, and $3.38\times10^{-12}m^2$/sec and $Ds=1.48{\times}10^{-15}m^2/sec$ for GAC respectively. From the results of column test it shows that the performance of LAC is also better than CAC and the optimal EBCT(Empty Bed Contact Time) is 4.52min. and activated carbon removes selectively the components of humic acid to be easily formed to THM.

  • PDF

물리화학적 공정에 의한 용존성 Humic Acid의 제거 (Removal of Dissolved Humic Acid with Physicochemical Treatment Process)

  • 김종식;최준호
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.737-742
    • /
    • 1999
  • THMs의 전구물질로 잘 알려진 humic acid를 대상으로 오존처리, 응집처리 및 활성탄 흡착처리와 같은 물리화학적 처리공정 도입에 따른 humic acid의 제거특성을 조사하고, 염소주입시 생성 가능한 부산물을 정성적으로 규명하기 위하여 본 연구를 실시하였다. Humic acid에 오존을 주입한 결과 pH가 급격히 감소하였는데, 이는 분자량이 큰 humic acid가 오존에 의하여 $H_2O$$CO_2$로 완전히 산화되지 못하고 중간생성물인 저급 지방산으로 분해된 결과로 판단되었다. 그리고 용존성 humic acid의 응집특성을 조사하기 위하여 PAC 160 mg/L로 응집을 실시한 결과 TOC는 약 25%, $COD_{Cr}$는 24%가 제거되었으나, 색도는 단지 5%만이 제거되어, humic acid에 의해 유발되는 색도는 응집으로 제거하기 어려운 것으로 판단되었다. 그러나 오존처리에서는 95% 이상의 색도가 제거되었으며, 이때 색도는 오존 접촉시간에 대해 1차반응으로 제거되었고, 반응속도상수값 k는 $0.067min^{-1}$로 조사되었다. 활성탄 흡착 실험에서는 오존 전처리를 실시함으로써 활성탄 흡착 효율이 크게 증가함을 확인할 수 있었으며, humic acid에 염소를 주입한 결과 THMs만 검출되었을 뿐 다른 휘발성 미량 유기화합물은 검출되지 않았고, 오존처리를 실시한 오존처리수에서도 알데히드류 및 케톤류와 같은 부산물은 검출되지 않았다.

  • PDF