• Title/Summary/Keyword: TGF-β

Search Result 246, Processing Time 0.023 seconds

Morin alleviates fructose-induced metabolic syndrome in rats via ameliorating oxidative stress, inflammatory and fibrotic markers

  • Heeba, Gehan Hussein;Rabie, Esraa Mohamed;Abuzeid, Mekky Mohamed;Bekhit, Amany Abdelrehim;Khalifa, Mohamed Montaser
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.177-187
    • /
    • 2021
  • Metabolic syndrome (MBS) is a widespread disease that has strongly related to unhealthy diet and low physical activity, which initiate more serious conditions such as obesity, cardiovascular diseases and type 2 diabetes mellitus. This study aimed to examine the therapeutic effects of morin, as one of the flavonoids constituents, which widely exists in many herbs and fruits, against some metabolic and hepatic manifestations observed in MBS rats and the feasible related mechanisms. MBS was induced in rats by high fructose diet feeding for 12 weeks. Morin (30 mg/kg) was administered orally to both normal and MBS rats for 4 weeks. Liver tissues were used for determination of liver index, hepatic expression of glucose transporter 2 (GLUT2) as well as both inflammatory and fibrotic markers. The fat/muscle ratio, metabolic parameters, systolic blood pressure, and oxidative stress markers were also determined. Our data confirmed that the administration of morin in fructose diet rats significantly reduced the elevated systolic blood pressure. The altered levels of metabolic parameters such as blood glucose, serum insulin, serum lipid profile, and oxidative stress markers were also reversed approximately to the normal values. In addition, morin treatment decreased liver index, serum liver enzyme activities, and fat/muscle ratio. Furthermore, morin relatively up-regulated GLUT2 expression, however, down-regulated NF-κB, TNF-α, and TGF-β expressions in the hepatic tissues. Here, we revealed that morin has an exquisite effect against metabolic disorders in the experimental model through, at least in part, antioxidant, anti-inflammatory, and anti-fibrotic mechanisms.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Modification of Gut Microbiota and Immune Responses via Dietary Protease in Soybean Meal-Based Protein Diets

  • Song, Minho;Kim, Byeonghyeon;Cho, Jin Ho;Kyoung, Hyunjin;Choe, Jeehwan;Cho, Jee-Yeon;Kim, Younghoon;Kim, Hyeun Bum;Lee, Jeong Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.885-891
    • /
    • 2022
  • Plant-based protein sources such as soybean meal have low digestibility and are generally promoted accumulation of undigested proteins into the intestine by enzymatic treatments. Moreover, potential intestinal pathogens ferment undigested proteins, producing harmful substances, such as ammonia, amines and phenols, leading to an overactive immune response and diarrhea in weaned pigs. As a solution, dietary proteases hydrolyze soybean-based antinutritive factors, which negatively affect immune responses and gut microbiota. In this study, we investigated the effects of dietary proteases (PRO) in a low-crude protein (CP) commercial diet on the immune responses and gut microbiota of weaned pigs. The experimental design consisted of three dietary treatments: a commercial diet as a positive control (PC; phase1 CP = 23.71%; phase 2 CP: 22.36%), a lower CP diet than PC as negative control (NC; 0.61% less CP than PC), and NC diet supplement with 0.02% PRO. We found that PRO tended to decrease the frequency of diarrhea in the first two weeks after weaning compared with PC and NC. In addition, pigs fed PRO showed decreased TNF-α and TGF-β1 levels compared with those fed PC and NC. The PRO group had a higher relative proportion of the genus Lactobacillus and lower levels of the genus Streptococcus than the PC and NC groups. In conclusion, the addition of PRO to a low CP commercial weaned diet attenuated inflammatory responses and modified gut microbiota in weaned pigs.

Role of Interleukin(IL)-6 in NK Activity to Hypoxic-Induced Highly Invasive Hepatocellular Carcinoma(HCC) Cells

  • Hwan Hee Lee;Hyojung Kang;Hyosun Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.864-874
    • /
    • 2023
  • Natural killer (NK) cell dysfunctions against hepatocellular carcinoma (HCC) in a hypoxic environment. Many solid tumors are present in a hypoxic condition, which changes the effector function of various immune cells. The transcription of hypoxic-inducible factors (HIFs) in cancer cells make it possible to adapt to their hypoxic environment and to escape the immune surveillance of NK cells. Recently, the correlation between the transcription of HIF-1α and pro-inflammatory cytokines has been reported. Interleukin (IL)-6 is higher in cancers with a highly invasive ability, and is closely related to the metastasis of cancers. This study showed that the expression of HIF-1α in HCC cells was associated with the presence of IL-6 in the environment of HCC-NK cells. Blocking of IL-6 by antibody in the HCC-NK interaction changed the production of several cytokines including TGF-β, IL-1, IL-18 and IL-21. Interestingly, in a co-culture of HIF-1α-expressed HCC cells and NK cells, blocking of IL-6 increased the production of IL-21 in their supernatants. In addition, the absence of IL-6 significantly enhanced the cytotoxic ability and the expression of the activating receptors (NKG2D, NKp44, and NKG2C) in NK cells to HIF-1α-expressed HCC cells. These effects might be made by the decreased expression of HIF-1α in HCC cells through the inhibited phosphorylation of STAT3. In conclusion, the absence of IL-6 in the interaction of HIF-1α-expressed HCC cells and NK cells could enhance the antitumor activity of NK cells to HCC cells.

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim;Rajib Hossain;Xin Li;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.484-495
    • /
    • 2023
  • Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.

The maintenance mechanism of hematopoietic stem cell dormancy: role for a subset of macrophages

  • Cheong-Whan Chae;Gun Choi;You Ji Kim;Mingug Cho;Yoo-Wook Kwon;Hyo-Soo Kim
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.482-487
    • /
    • 2023
  • Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in niche-mediated LT-HSC maintenance. KAI1 activates TGF-β1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LT-HSCs that regulates dormancy through interaction with DARC-expressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LT-HSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

The Anti-Diabetic Pinitol Improves Damaged Fibroblasts

  • Ji-Yong Jung;Joong Hyun Shim;Su Hae Cho;Il-Hong Bae;Seung Ha Yang;Jinsick Kim;Hye Won Lim;Dong Wook Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.224-230
    • /
    • 2024
  • Pinitol (3-O-Methyl-D-chiro-inositol) has been reported to possess insulin-like effects and is known as one of the anti-diabetic agents to improve muscle, liver, and endothelial cells. However, the beneficial effects of pinitol on the skin are not well known. Here, we investigated whether pinitol had effects on human dermal fibroblasts (HDFs), and human dermal equivalents (HDEs) irradiated with ultraviolet A (UVA), which causes various damages including photodamage in the skin. We observed that pinitol enhanced wound healing in UVA-damaged HDFs. We also found that pinitol significantly antagonized the UVA-induced up-regulation of matrix metalloproteinase 1 (MMP1), and the UVA-induced down-regulation of collagen type I and tissue inhibitor of metalloproteinases 1 (TIMP1) in HDEs. Electron microscopy analysis also revealed that pinitol remarkably increased the number of collagen fibrils with regular banding patterns in the dermis of UVA-irradiated human skin equivalents. Pinitol significantly reversed the UVA-induced phosphorylation levels of ERK and JNK but not p38, suggesting that this regulation may be the mechanism underlying the pinitol-mediated effects on UVA-irradiated HDEs. We also observed that pinitol specifically increased Smad3 phosphorylation, which is representative of the TGF-β signaling pathway for collagen synthesis. These data suggest that pinitol exerts several beneficial effects on UVA-induced damaged skin and can be used as a therapeutic agent to improve skin-related diseases.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy

  • Keum-joo Son;Ki ryung Choi;Seog Jae Lee;Hyunah Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT+CD11c+cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.