• Title/Summary/Keyword: TGF-$\beta$ receptors

Search Result 35, Processing Time 0.029 seconds

Effects of Boheo-tang and Boheo-tang plus Cervi Pantotrichum Cornu : on Lactation in Postpartum mice (보허탕(補虛湯)과 보허탕가녹용(補虛湯加鹿茸)이 산후 생쥐의 유즙분비에 미치는 영향)

  • Lee, Eun-Hee;Kim, Tae-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2008
  • Purpose: The purpose of this study is to investigate the effect of Boheo-tang (B) and Boheo-tang plus cervi pantotrichum cornu (B+CP) on lactation in postpartum C57BL/6N mice. Methods: Normal saline(control), Band B+CP (8mu l/g$) were administerd p.o. twice a day for 20 days. Lactating mammary gland tissues were examined through light microscope by the way of HE staining and immunohistochemical assay. Milk producing associated gene expression were accessed by RT-PCR. Results: In mammary gland, amount of adipose tissues were decreased in both Band B+CP treated group. And the ductal branches and alveolar tissues increased in both treated group. Immunoreactivity of prolactin receptors was increased both treated group, and immunoreactivity of oxytocin receptors was increased in the B+CP treated group. In both treated group, IGF-l mRNA expression was increased and TGF-$\beta$ mRNA expression was decreased. And PRL mRNA expression was increased in the B+CP treated group. PL-l mRNA expression was decreased in the B treated group but increased in the B+CP treated group. Conclusion: This study shows that treatment of Boheo-tang and Boheo-tang plus cervi pantotrichum cornu can improve postpartum lactation in C57BL/6N mice.

  • PDF

Expression of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ and PPAR-${\gamma}$ in the lung tissue of obese mice and the effect of rosiglitazone on proinflammatory cytokine expressions in the lung tissue

  • Ryu, Seung Lok;Shim, Jae Won;Kim, Duk Soo;Jung, Hye Lim;Park, Moon Soo;Park, Soo-Hee;Lee, Jinmi;Lee, Won-Young;Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.4
    • /
    • pp.151-158
    • /
    • 2013
  • Purpose: We investigated the mRNA levels of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$, PPAR-${\gamma}$, adipokines, and cytokines in the lung tissue of lean and obese mice with and without ovalbumin (OVA) challenge, and the effect of rosiglitazone, a PPAR-${\gamma}$ agonist. Methods: We developed 6 mice models: OVA-challenged lean mice with and without rosiglitazone; obese mice with and without rosiglitazone; and OVA-challenged obese mice with and without rosiglitazone. We performed real-time polymerase chain reaction for leptin, leptin receptor, adiponectin, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-${\alpha}$, transforming growth factor (TGF)-${\beta}$, PPAR-${\alpha}$ and PPAR-${\gamma}$ from the lung tissue and determined the cell counts and cytokine levels in the bronchoalveolar lavage fluid. Results: Mice with OVA challenge showed airway hyperresponsiveness. The lung mRNA levels of PPAR${\alpha}$ and PPAR-${\gamma}$ increased significantly in obese mice with OVA challenge compared to that in other types of mice and decreased after rosiglitazone administeration. Leptin and leptin receptor expression increased in obese mice with and without OVA challenge and decreased following rosiglitazone treatment. Adiponectin mRNA level increased in lean mice with OVA challenge. Lung VEGF, TNF-${\alpha}$, and TGF-${\beta}$ mRNA levels increased in obese mice with and without OVA challenge compared to that in the control mice. However, rosiglitazone reduced only TGF-${\beta}$ expression in obese mice, and even augmented VEGF expression in all types of mice. Rosiglitazone treatment did not reduce airway responsiveness, but increased neutrophils and macrophages in the bronchoalveolar lavage fluid. Conclusion: PPAR-${\alpha}$ and PPAR-${\gamma}$ expressions were upregulated in the lung tissue of OVA-challenged obese mice however, rosiglitazone treatment did not downregulate airway inflammation in these mice.

Isoflavones extracted from Sophorae Fructus upregulate the growth factors, IGF-I and TGF-$\beta$ in MG-63 cells

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Min-Won;Choi, Young-Wook;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.140.3-141
    • /
    • 2003
  • Isoflavones have been a central subject in natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are an important turning point in that they can act like estrogen by binding on estrogen receptors on target cell surface. We, therefore, believed that isoflavones may be applied in estrogen deficiency disease such as osteoporosis in terms of estrogen replacement therapy (ERT). As commonly known, osteoporosis is one of hormonal deficiency diseases, especially in menopausal women. (omitted)

  • PDF

hARIP2 is a Putative Growth-promoting Factor Involved in Human Colon Tumorigenesis

  • Gao, Rui-Feng;Li, Zhan-Dong;Jiang, Jing;Yang, Li-Hua;Zhu, Ke-Tong;Lin, Rui-Xin;Li, Hao;Zhao, Quan;Zhang, Nai-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8581-8586
    • /
    • 2014
  • Activin is a multifunctional growth and differentiation factor of the growth factor-beta (TGF-${\beta}$) superfamily, which inhibits the proliferation of colon cancer cells. It induces phosphorylation of intracellular signaling molecules (Smads) by interacting with its type I and type II receptors. Previous studies showed that human activin receptor-interacting protein 2 (hARIP2) can reduce activin signaling by interacting with activin type II receptors; however, the activity of hARIP2 in colon cancer has yet to be detailed. In vitro, overexpression of hARIP2 reduced activin-induced transcriptional activity and enhanced cell proliferation and colony formation in human colon cancer HCT8 cells and SW620 cells. Also, hARIP2 promoted colon cancer cell apoptosis, suggesting that a vital role in the initial stage of colon carcinogenesis. In vivo, immunohistochemistry revealed that hARIP2 was expressed more frequently and much more intensely in malignant colon tissues than in controls. These results indicate that hARIP2 is involved in human colon tumorigenesis and could be a predictive maker for colon carcinoma aggressiveness.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

Corticotropin-Releasing Factor Down-Regulates Hair Growth-Related Cytokines in Cultured Human Dermal Papilla Cells (사람 모유두세포에서 코르티코트로핀분비인자에 의한 모발성장관련사이토카인의 발현 조절)

  • Lee, Eun Young;Jeon, Ji Hye;Lee, Min Ho;Lee, Sunghou;Kim, Young Ho;Kang, Sangjin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Corticotropin-releasing factor (CRF) is involved in the stress response and there is increasing evidence that stress influences skin disease such as hair loss. In cultured human hair follicles, CRF inhibits hair shaft elongation, induces premature regression and promotes the apoptosis of hair matrix keratinocytes. We investigated whether CRF influences the dermal papilla cells (DPC) that play pivotal roles in hair growth and cycling. Human DPCs were treated with CRF, adrenocorticotropic hormone (ACTH) and cortisol, key stress hormones along the hypothalamic-pituitary -adrenal (HPA) axis for 1-24 h. Interestingly, CRF modulated the expression of cytokines related to hair growth (KGF, Wnt5a, $TGF{\beta}-2$, Nexin) and increased cAMP production in cultured DPCs. CRF receptors were down-regulated by negative feedback systems. Pretreatment of CRF receptor antagonists or protein kinase A (PKA) inhibitor prevented the CRF-induced modulation. Since the CRF induces proopiomelanocortin (POMC) expression through the cAMP/PKA pathway, we analyzed POMC mRNA. CRF stimulated POMC expression in cultured human DPCs, yet we were unable to detect ACTH levels by western blot. These results indicate that CRF operates within DPCs through CRF receptors along the classical CRF signaling pathway and CRF receptor antagonists could serve as potential therapeutic and cosmetic agents for stress-induced hair loss.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Expression of receptors of Vitamin D and cytokines in osteoclasts differentiated by M-CSF and ODF (Macrophage Colony-Stimulating Factor와 Osteoclast Differentiation Factor로 분화 유도된 생쥐 파골세포에서 Vitamin D 및 수종의 싸이토카인 수용체의 발현)

  • Seong, Soo-Mi;Um, Heung-Sik;Ko, Sung-Hee;Woo, Kyung-Mi;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.865-873
    • /
    • 2002
  • The primary cause of tooth loss after 30 years of age is periodontal disease. Destruction of alveolar bone by periodontal disease is done by bone resorbing activity of osteoclasts. Understanding differentiation and activation mechanism of osteoclasts is essential for controling periodontal disease. The purpose of this study is to identify the possible effects of Vitamin D and cytokines affecting osteoclasts and its precursor cells. Four to six week-old mice were killed and humerus, radius, tibia and femur were removed aseptically and washed two times with Hank's solution containing penicillin-streptomycin and then soft tissue were removed. Bone marrow cells were collected by 22 gauge needle. Cells were cultured in Hank's solution containing 1 mg/ml type II collagenase, 0.05% trypsin, 41mM EDTA. Supernatant solution was removed 5 times after 15 minutes of digestion with above mentioned enzyme solution, and remained bone particles were maintained in alpha-MEM for 15 minutes and $4^{\circ}C$ temperature. Bone particles were agitated for 1 minute and supernatant solution containing osteoclast precursor cells were filtrated with cell stainer. These separated osteoclast precursor cells were dispensed with 100-mm culture dish by $1{\times}10^7$ cells unit and cultured in ${\alpha}$- MEM containing 20 ng/ml recombinant human M-CSF, 30 ng/ml recombinant human soluble osteoclast differentiation factor and 10% fetal calf serum for 2 and 7 days. Total RNA of osteoclast precursor cells were extracted using RNeasy kit. One ${\mu}g$ of total RNA was reverse transcribed in $42^{\circ}C$ for 30 minutes using SuperScriptII reverse transcriptase. Expression of transcribed receptors of each hormone and cytokine were traced with 1 ${\mu}l$ of cDNA solution by PCR amplification. Vitamin D receptor WAS found in cells cultured for 7 days. TNF-${\alpha}$ receptor was found in cells cultured for 2 days and amount of receptors were increased by 7 days. IL-1 type I receptor was not found in cells cultured 2 and 7 days. But, IL-1 receptor type II was found in cells cultured for 2 days. TGF-${\alpha},{\beta}$type I receptor was found in cells cultured 2 and 7 days, and amount of receptors were increased by 7 days of culture. These results implies Vitamin D and cytokines can affect osteoclasts directly, and affecting period in differentiation cycle of osteoclasts is different by Vitamin D and cytokines.

Adrenomedullin Deficiency Increases the Susceptibility of Liver Fibrosis Induced by CCl4 (아드레노메둘린 결핍은 사염화탄소로 유도된 간경화 감수성을 상승시킴)

  • Ji, Ae-Ri;Hwang, Meeyul;Kim, Ah-Young;Lee, Eun-Mi;Lee, Eun-Joo;Lee, Myeong-Mi;Sung, Soo-Eun;Kim, Sang-Hyeob;Park, Jin-Kyu;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.463-472
    • /
    • 2015
  • Adrenomedullin (AM) is a peptide expressed in all body tissues, and its related receptors are increased in liver fibrosis. In this study, we evaluated the effect of AM deficiency on liver fibrogenesis induced by $CCl_4$ using AM heterozygous (HT) mice. The animals received a single injection of $CCl_4$ or olive oil for the acute experiment, and received $CCl_4$ or olive oil three times a week for 6 weeks for the chronic experiment. Fibrosis was accessed using histopathological analysis and the western blot. The AM HT mice showed mild pericentrilobular degeneration when compared to the AM wild type (WT) mice. In the acute experiment, there was no significant difference between the AM WT and AM HT mice. However, in the chronic experiment, the $CCl_4$-treated AM HT mice showed more severe liver fibrosis than that of the CCl4-treated AM WT mice. The AST and ALT levels of the AM HT $CCl_4$ group were higher than those of the AM WT CCl4 group. Additionally, the collagen deposition, $\alpha$- SMA protein and TGF-$\beta$ protein were increased in the AM HT $CCl_4$ group when compared to the AM WT $CCl_4$ group. The AM HT mice also exhibited severe lipid peroxidation through the GSH decrement. Taken together, our data suggest that AM deficiency increases the susceptibility to liver fibrosis induced by $CCl_4$, indicating a novel therapeutic target for patients with liver fibrosis.