• Title/Summary/Keyword: TGA analysis

Search Result 1,006, Processing Time 0.035 seconds

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Effect of Particle Size on Thermal Property of RDX and HMX (HMX와 RDX의 열적 특성에 미치는 입자 크기의 영향)

  • Kim, Seung Hee
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.352-357
    • /
    • 2012
  • Techniques of thermal analyses such as DSC and TGA have been used in the study of activation energy (Ea) and frequency factor (A) depending on the particle size of RDX and HMX. Activation energy and frequency factor were calculated by Kissinger's method and Vyazovkin's method. As the particle size of RDX increased, TGA showed activation energy increased, but DSC didn't show. However, In case of HMX, as the particle size increased, both of DSC and TGA showed increase in activation energy. Moreover, Vyazovkin's method can obtain activation energy and mechanism according to decomposition of RDX and HMX.

Evaluation of Radiation Degradation or Crosslinked Polyethylene using TGA (TGA를 이용한 가교폴리에틸렌의 방사선 열화 평가)

  • Lee, Chung;Kim, Ki-Yup;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • Radiation degradation of crosslinked polyethylene(XLPE) was investigated using thermogravimetric analysis(TGA), The results of TGA were compared with FT-IR, melting temperature, oxidation induction time, and elongation at break on the XLPE exposed by $\gamma$-ray. 5% decomposition temperature of $\gamma$-ray irradiated XLPE showed similar tendencies with the case of elongation at break. Both properties agreed below 1000 KGy, however, did not show any remarkable characteristics above 1000 kGy, these properties can be useful to evaluate the radiation degradation of XLPE for only low irradiated region. Above 1000 kGy, the thermal decomposition activation energy showed decreased, on the contrary, increasing below 1000 kGy. Compared with FT-IR spectrum of irradiated XLPE, it was confirmed that the oxidation reaction was still occurring below 1000 kGy. Radiation degradation of XLPE was dependent upon the irradiation doses, TGA can be a useful tool to evaluate the degradation.

Influence of Sample Preparation on Thermogravimetric Analysis of Poly(Ethylene-co-Vinyl Acetate)

  • Lee, Sang-jin;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.206-211
    • /
    • 2016
  • Experimental error sources for thermogravimetric analysis (TGA) of poly(ethylene-co-vinyl acetate) (EVA) were investigated and sample preparation method to reduce the experimental error was suggested. Maximum dissociation temperatures of EVA for the first and second dissociation reactions ($T_{m1}$ and $T_{m2}$, respectively) were measured. By decreasing the weight of raw EVA, the $T_{m1}$ increased but the the $T_{m2}$ decreased. When weight of the raw EVA was over 10 mg, the TGA curve showed abnormal behaviors. The abnormal TG behaviors were explained by gathering and instantaneous evaporation of acetic acid formed by deacetylation of the VA unit. When TGA analysis of EVA was performed using untreated (raw) EVA, the experimental errors were about 1%. In order to eliminate the abnormal TG behaviors and to reduce the experimental errors, EVA film made by solvent casting was used. For the treated EVA (EVA film), the abnormal TG behaviors did not appear, the $T_{m1}$ decreased by about $2^{\circ}C$ but the $T_{m2}$ increased by about $6^{\circ}C$, and the experimental errors were reduced by 0.5%.

Removal of Heavy Metals(Pb, Cr) Using Waste Eggshell

  • Park, Heung-Jai;Bong, Sang-Hun;Jeong, Seong-Ug
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.386-393
    • /
    • 2005
  • The calcination characteristic of waste eggshell were examined by thermal gravimetric analysis (TGA), qualitative and quantitative analysis by X-ray fluorescence, and microstructural analysis by scanning electronic microscopy(SEM). The calcined sample was lager grain and pore size.

  • PDF

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

Evaluation of Quality of Ginger Oleoresin by Thermal Analysis (열분석에 의한 생강엑기스의 품질평가)

  • Shin, Ae-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.229-233
    • /
    • 1990
  • The thermal analysis method has been proposed for the evaluation of the relative qualities of different ginger oleoresin samples and discussed to demonstrate its simple applicability. TGA measurement to compare characteristics of ginger oleoresins give more sensitive indication on the thermal decomposition than that of DSC. The results show that the quality of oleoresin obtained from sliced sun dried ginger is better than that from hot air dried whole ginger.

  • PDF

Study on Inhomogeneity in Compositions of Asphalt Pavement Wear Particles Using Thermogravimetric Analysis

  • Uiyeong Jung;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Asphalt pavements are generally composed of fine and coarse aggregates, bitumen, and modifier. Asphalt pavement wear particles (APWPs) are produced by friction between the road surface and the tire tread, and they flow into the environment such as rivers and oceans. Model APWPs were prepared and a single APWP of 212-500 (S-APWP) and 500-1000 ㎛ (L-APWP) was analyzed using thermogravimetric analysis (TGA) to investigate inhomogeneity in the compositions of the APWPs. The reference TGA thermogram was built using thermograms of the raw materials and formulation of the model asphalt pavement. The compositions of the APWPs were different from each other. Ash contents of the APWPs were lower than expected. Inhomogeneity in the total contents of bitumen and modifier was more severe than that in the other components. The inhomogeneity of the S-APWPs was more severe than that of the L-APWPs.

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Evaluation of the Oxidation of the Carbon Fibers by Normalized Rate Equation (표준화 반응식을 이용한 탄소섬유의 산화반응 해석)

  • 노재승
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.239-239
    • /
    • 2003
  • 탄소재료의 산화반응을 설명한 대부분의 논문은 TGA(Thermo Gravimetric Analysis)를 이용한 연구이다. TGA 장치는 가열이 필요한 물질의 반응연구에 다양하게 이용되고 있는데, 온도에 대한 무게 변화를 간편하게 알 수 있다는 장점과 함께 보편적으로 편리한 Arrhenius형태의 속도식으로 해석된다. 많은 연구자들은 TGA를 이용하여 다양한 탄소재료에 대한 반응속도상수를 구하였으며, 반응기체, 반응온도 및 원료물질에 따라 다른 속도를 나타내는 실험결과를 표준화된 속도식으로 표현하고자 하는 노력이 있었다. 그러나 이런 대부분의 연구는 coal 등과 같은 탄소재료의 연소특성을 이용하려는 에너지 변환 연구가 주를 이루어 왔으며, 탄소섬유의 산화반응에 대한 표준화 식으로 해석한 보고는 거의 없는 실정이다. 이 연구에서는 내부구조가 현격하게 차이나는 다른 두 종류의 피치계 탄소섬유를 TGA를 이용하여 등온 산화반응 시켰다. 반응기체의 종류와 반응온도를 변화시켜 산화반응조건에 따른 중량변화를 관찰하였고, 여러 산화조건에서 얻어진 산화속도를 Kasaoka 등에 의해 제안된 표준화식을 이용하여 산화반응의 평균 속도상수 K와 전환율이 0.5일 때의 속도상수 $k_{f=0.5}$ 결과를 비교하여 산화 반응속도를 정량적으로 해석하고자 하였다.다.

  • PDF