• Title/Summary/Keyword: TEMP

Search Result 385, Processing Time 0.025 seconds

Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom (느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향)

  • Yum, Sung Hyun;Kim, Si Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2021
  • It has been known that oyster mushrooms cultivated in facilities with thermal insulation have been strongly affected by inner environments. Forced air-circulation fans exert much direct influence on disturbing air inside the facility so the matter is of particular interest. This study is carried out to investigate the measured levels of air uniformity in a cultivation facility for oyster mushroom in the various cases that reversibly controlled air-circulation fans which drove the flow in the upward and reverse direction by turn and unidirectional fans by which the wind blew upwards only were operated from July 1 to 10. The actual survey for the selection of ongoing operation cases presented that farmers, even though there were some discrepancies, have made use of fans in a way that it paused for 5-30min after running for 5-15min by turn. The level of air uniformity in the case of adopting reversible fans revealed a slight difference of 1.4-1.8℃ (Temp.) and 7.8-8.7% (R.H.) under the condition of not using a cooler during the investigation period. By contrast, unidirectional fans showed a noticeable difference of 3.2-3.7℃ and 14.0-15.4%, which meant that air uniformity driven by reversible fans much more increased compared to that for unidirectional fans. Among the twenty operational applications considered for reversible fans, the circumstance that the wind blew upwards for 10-15min and ceased for 5-10min and blew again in the reverse direction for 10-15min in succession gave minor improvements at the level of air uniformity, but at present there was somewhat difficult to make decision on which cases were optimally best. It seems necessary that the effects of reversible fans on air uniformity as well as qualities of oyster mushrooms have to be appraised in the cultivation period and the flow visualization needs to be done to ascertain the performance of air mixture.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

Studies on the Chilling Injury of Rice seedlings. 1. Characterization of Chilling Injury & Recovery Different Leaf Stages (수도의 유초기 냉해에 관한 연구 1. 유묘기 엽령별 냉해발현 및 회복양태)

  • Kwon, Y.W.; Kim, J.H.;Ahn, S.B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.11-24
    • /
    • 1979
  • To characterize elastic and plastic chilling injury, rice seedlings grown at 28/$16^{\circ}C$ day/night temp. under 20K lux (13hrs.) in a phytotron were subjected to a 11/$6^{\circ}C$, 20K lux condition for 2, 4, 6 or 8 days at 1, 2, 3, 4 or 5th leaf-stage, respectively, followed by further growth under 28/$16^{\circ}C$condition till 30th day after seeding. Japonica variety Jinheung and Chulwon No.1 survived almost 100% without any significant , discoloration and death of leaves due to chilling even under the chilling of 8 days at all seedling ages tested. Tongil and Yushin, varieties from Indica x Japonica cross, showed increasing discoloration of leaves and death of plants with increase in chilling intensity. The longest chilling duration shown seedling death less than 5% was 4, 6, 1, 4, 8 days for Tongil, and 6, 6, 1, 2, 2, days for Yushin at 1, 2, 3, 5th leaf-stage, respectively. The degree of discoloration and death of leaves or suppression of height growth was not explicitly related to seedling death or the dry weight reduction. The degree of seedling death or dry weight reduction could differentiate chilling tolerance of varieties and seedling ages, but somewhat differently. Reduction in dry weight due to chilling occurred even without any visible injury or seedling death. These suggest that both the degree of seedling death and reduction in dry weight should be considered in the test of varieties for chilling tolerance. Combined evaluation of seedling death and dry weight reduction indicated the most susceptible seedling age to chilling injury to be 1 to 2nd leaf-stage for Jinheung, 2 to 3rd leaf-stage for Chulwon No.1, 3rd leaf- stage for Tongil and Yushin, respectively.

  • PDF

Effect of Sanitation Treatment of Extending Shelf-life on Fresh Poultry Meats (계육(鷄肉)의 유통기간연장(流通期間延長)을 위(爲)한 위생처리방법(衛生處理方法)에 관(關)한 연구(硏究))

  • Cho, M.J.;Jang, P.H.;Park, K.B.;Lee, B.M.
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.291-300
    • /
    • 1982
  • In order to develop effective and simple sanitation method for the extention of shelf-life of fresh poultry meat, the effect of sanitizers, sanitation methods and packaging materials on the extention of shelf-life of poultry meats was observed at the $4^{\circ}C$ and room temp$(10{\sim}20^{\circ}C)$. The results are summarized as follows: 1. The autochonous skin microflora of poultry, before processing, were believed to be removed or killed during the scalding and plucking, and exposed dermal tissue was contaminated by microorganisms from the subsequent stages of processing. 2. In the final stage of poultry processing, total viable counts of microorganisms and coliforms were averaged to $3.5{\times}10^4/cm^2$ and $400/cm^2$, respectively. 3. The refrigerated shelf-life of fresh whole poultry carcasses at $3\;to\;4^{\circ}C$ was extended to 7 to 16 days compared to control with the various treatments of some sanitizers by dipping freshly chilled carcasses for 5 min or spraying 1 liter of sanitizers per carcasses. In the case of storage at $10\;to\;15^{\circ}C$, the shelf-life of poultry carcasses was extended to one to two days by the sanitation treatments compared to control. 4. Spraying sanitation was more effective than dipping sanitation, and 5 minutes dipping and one liter spraying per carcass were enough for effective sanitation of poultry carcasses in most sanitizers. 5. The packaging with an oxygen impermeable polyvinylidene chloride extended the shelf-life to 10 days and 5 days with polyethylene compared to control. When poultry carcasses were sanitized by continuous spraying with one liter of 30 ppm of chlorine and another one liter of 5% of potassium sorbate, packaged with polyvinylidene chlorlde were extended to about 30 days compared to control.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF