• Title/Summary/Keyword: TEK

Search Result 433, Processing Time 0.032 seconds

Formation of Mesoporous Membrane by Reverse Thermally induced Phase Separation (RTIPS) Process Using Flash Freezing (Mesoporous 막 제조를 위한 급냉법에 의한 역 열유도상전이공정)

  • Yeom, Choongkyun;Kim, Jiwon;Park, Heeyoung;Park, Seong Eun;Lee, Kee Yoon;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.67-79
    • /
    • 2021
  • Mesoporous polystyrene (PS) and polyethersulfone (PES) membranes have been fabricated by reverse-thermally induced phase separation (RTIPS) process, using flash freezing. The mesoporous pores can be created by the nano-scaled phase separation induced by the formation and growth of solvent crystals in the dope solution in RTIPS process. RTIPS process has been characterized through analysis on the enthalpy change in the solvent of the dope solution, the morphology of the membrane fabricated with different polymer content, and the pore size distribution and its standard deviation of pore size of the membrane with polymer content via DSC, SEM, and BET, respectively. It is found that the kinetic aspect of the dope solution, i.e., the crystallization of solvent is a crucial factor to determine the structure of membrane fabricated in RTIPS rather than the thermodynamic aspect of the dope solution.

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

Rural landscape and biocultural diversity in Shinan-gun, Jeollanam-do, Korea

  • Kim, Jae-Eun
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.249-256
    • /
    • 2015
  • Islands are often habitats to unique species because they have different environmental conditions from the mainland and other islands. Another characteristic of islands is their limited natural resources, which has led island residents to heavily rely on traditional ecological knowledge (TEK) and use resources sustainably. The so-called "Maeul landscape" shows the interrelationship of biological species and people's use of natural resources. Shinan-gun is an administrative district located in the southwestern part of Korea that forms an archipelago with huge tidal flat areas. Since long ago, people's use of these tidal flats shows a high degree of biocultural diversity. Maeul landscapes also show humans' adaptation to the natural environment. For instance, strong winds blowing mainly from the northwest have led people in Shinan-gun to create "Ushil," a windbreak forest with stone blocks to block wind from their villages and agricultural fields. At present, the transfer of TEK to future generations is at stake due to socio-economic changes that cause island populations to shrink and age rapidly. Islands are often regarded as good destinations for tourism, but attention should also be given to sustainable development due to the environmental characteristics of islands. International organizations are making efforts to curb the threats of global environmental problems especially on small islands. Their activities are aimed at seeking solutions that stress the central role of biocultural diversity in establishing the sustainable use of natural resources on islands. Joint efforts oflocal people and government authorities to protect and conserve the Maeul landscape should be encouraged.

Development of Commercial-scaled Pervaporation Hollow Fiber Membrane System for High Pressure and High Temperature Applications (고온 고압용 상업적 규모의 중공사 투과증발 막시스템 개발)

  • Yeom, Choong Kyun;Kang, Kyeong Log;Kim, Joo Yeol;Ahn, Hyo Sung;Kwon, Konho
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2013
  • The main purpose of this study is to develop a commercial scale of pervaporative process equipped with hollow fiber membrane modules, being able to effectually purify organic solvent at high temperature well over its boiling point under high vapor pressure. Three constituent technologies have been developed; 1) to fabricate braid-reinforced hollow fiber membrane stable in high pressure and high temperature application, 2) to design and fabricate a commercial scale of hollow fiber membrane module, and 3) to design and fabricate a pilot scale of pervaporation equipment system. The developed hollow fiber membrane possesses a membrane performance superior to the membrane of Sulzer (Germany) which is the most-well known for pervaporation process, and the membrane module equips hollow fiber membranes of $4.6m^2$ and the pervaporation system can treat organic liquid at 200 L/h, which is based on the dehydration of 95 wt% isopropyl alcohol (IPA). Since the membrane module is designed to flow in and pass through the inside of individual hollow fiber membrane, not to involve both the formation of feed's dead volume observed in flat-sheet membrane module and the channeling of feed occurring inside hollow fiber bundle which lower membrane performance seriously, it showed excellent separation efficiency. In particular, the module is inexpensive and has less heat loss into its surrounding, in compared with flat-sheet membrane module. In addition, permeant can be removed effectively from the outer surface of hollow fiber membrane because the applied vacuum is conveyed uniformly through space between fibers into respective fiber, even into one in the middle of the hollow fiber bundle in which the space between fibers is uniform in distance. Since the hollow fiber membrane pervaporation system is the first one ever developed in the world, our own unique proprietary technology can be secured, preoccupying technical superiority in export competitive challenges.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.