• Title/Summary/Keyword: TDRW method

Search Result 3, Processing Time 0.017 seconds

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Method for Evaluating Radionuclide Transport in Biosphere by Calculating Elapsed Transport Time (이동 경과 시간 계산을 이용한 생물권에서의 방사성 핵종 이동 평가 방법)

  • Ko, Nak-Youl;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.305-315
    • /
    • 2020
  • For geological disposal of radioactive wastes, a method was proposed to evaluate the radionuclide transport in the biosphere by calculating the elapsed time of nuclide migration. The radionuclides were supposed to be introduced from a natural barrier and reached a large surface water body following a groundwater flow in a shallow subsurface. The biosphere was defined as a shallow subsurface environment that included aquifers on a host rock. Using the proposed method, a calculation algorithm was established, and a computer code that implemented the algorithm was developed. The developed code was verified by comparing the simulation results of the simple cases with the results of the analytical solution and a public program, which has been widely used to evaluate the radiation dose using the radionuclide transport near the surface. A case study was constructed using the previous research for radionuclide transport from the hypothetical geological disposal repository. In the case study, the code calculated the mass discharge rate of radionuclide to a stream in the biosphere. Because the previous research only demonstrated the transport of radionuclides from the hypothetical repository to the host rock, the developed code in the present study could help identify the total transport of radionuclide along the complete pathway.