• Title/Summary/Keyword: TDR 기술

Search Result 32, Processing Time 0.023 seconds

A Dataset from a Test-bed to Develop Soil Moisture Estimation Technology for Upland Fields (농경지 토양수분 추정 기술 개발을 위한 테스트 베드 데이터 세트)

  • Kang, Minseok;Cho, Sungsik;Kim, Jongho;Sohn, Seung-Won;Choi, Sung-Won;Park, Juhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • In this data paper, we share the dataset obtained during 2019 from the test-bed to develop soil moisture estimation technology for upland fields, which was built in Seosan and Taean, South Korea on May 3. T his dataset includes various eco-hydro-meteorological variables such as soil moisture, evapotranspiration, precipitation, radiation, temperature, humidity, and vegetation indices from the test-bed nearby the Automated Agricultural Observing System (AAOS) in Seosan operated by the Korea Meteorological Administration. T here are three remarkable points of the dataset: (1) It can be utilized to develop and evaluate spatial scaling technology of soil moisture because the areal measurement with wide spatial representativeness using a COSMIC-ray neutron sensor as well as the point measurement using frequency/time domain reflectometry (FDR/TDR) sensors were conducted simultaneously, (2) it can be used to enhance understanding of how soil moisture and crop growth interact with each other because crop growth was also monitored using the Smart Surface Sensing System (4S), and (3) it is possible to evaluate the surface water balance by measuring evapotranspiration using an eddy covariance system.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.