• Title/Summary/Keyword: TDOA Positioning

Search Result 58, Processing Time 0.02 seconds

Alternative PNT Requirements and Technology Analysis (GNSS 대안항법시스템 요구사항 및 기술 분석)

  • Jo, Sanghoon;Kang, Seung-Eun;Kang, Ja-Young;Ko, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.28-34
    • /
    • 2012
  • The recent transition to Performance Based Navigation in aviation enhances the accuracy of aircraft position, safety and efficiency in air traffic operations by using satellite-based navigation system such as GNSS. However, intentional interferences with GNSS signal as well as ones coming from natural phenomena such as solar storm increase. GNSS have very low power and therefore their signals are more susceptible to interferences than ground-based navigation signals. This paper introduces requirements of alternative positioning, navigation and timing(APNT) system and relevant technologies when the GNSS signals are not valid.

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.

Study of Cross Correlation Using DRS(Delayed Reference Sample) for Precision Time Measurement of Input Signal on Multilateration (다변측정감시시스템 신호 입력 시각 정밀 측정을 위한 DRS(Delayed Reference Sample)를 이용한 Cross Correlation 방안 연구)

  • Chang, Jae-Won;Lee, Sang Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.244-250
    • /
    • 2018
  • Multilateration acquires the transponder signal of target from receivers installed on the ground and calculates the position of the target using the difference of the signal acquisition time of each receiver. One of the factors that influence the positioning accuracy of Multilateration using the TDOA calculation method is the error due to the precision measurement of signal input time. When measuring the signal input time at the receiver, the input signal is sampled using the reference clock of the receiver and a reference sample having the same sampling rate is applied to the cross correlation technique. Therefore, the accuracy of the signal input time is proportional to the reference clock. In this paper, the algorithm for precisely measuring the signal input time by performing cross correlation between the input signal of the receiver and DRS(Delayed Reference Sample) is proposed. In order to verify this, we implemented the pulse signal of the transponder that is transmitted from the target using Matlab. Through the simulation, cross correlation between the proposed DRS and the input signal was performed. From this result, the performance of the precise measurement of signal input time was analyzed.

A Frequency Domain based Positioning Method using Auto Regressive Modeling in LR-WPAN (주파수 영역상의 AR 모델링 기반 이용한 LR-WPAN용 무선측위기법)

  • Hong, Yun-Gi;Bae, Seung-Chun;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.561-570
    • /
    • 2009
  • Ultra-wideband communication systems based on impulse radio have merits that are possible for the high data rate transmission, high resolution ranging are positioning system. Conventionally, in order to accomplish these features, the high-speed ADC (Analog to Digital Convertor) is necessary to apply radio determination system operating in time domain. However, considering low rate - wireless personal area network (LR-WPAN) aims to low-cost hardware implementation, the expensive ADC converting GHz sampling per second is not appropriate. So, this paper introduces a low complex AR (Auto Regressive) model based non-coherent ranging scheme operating in frequency domain with using low-speed ADC utilizing analog Voltage Control Oscillator (VCO) mode for the frequency domain transformation. To verify the superiority of the proposed ranging and location algorithm working in frequency domain, the suggested IEEE 802.15.4a TG channel model is used to exploit affirmative features of the proposed algorithm with conducting the simulation results.

와이브로 망을 이용한 측위 시스템의 성능 분석

  • Song, Seung-Heon;Hwang, In-Jae;Yang, Seung-Hyeon;An, Jae-Min;Seong, Tae-Gyeong;Kim, Gyeong-Su;An, Ji-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.547-550
    • /
    • 2006
  • 휴대 인터넷은 이동 중에도 무선으로 고속의 데이터 송수신이 가능한 통신 서비스로서 우리나라에서는 WiBro(Wireless Broadband)라고 명명되어 2006년 6월 상용 서비스를 시작하였다. 한국 정보 통신 기술협회(TTA)와 IEEE802.16e 표준에서 제시된 휴대인터넷 서비스는 기본적으로 기지국과 단말을 기반으로 한 CDMA통신 시스템과 유사한 셀룰러 망 구조를 가지고 있다. 와이브로에서 모든 RAS(Radio Access Station)는 매 5msec마다 프레임을 전송하고, 이 프레임의 앞 단에는 Preamble이 위치하고 있어 기지국과 단말의 Synchronization을 가능케 해준다. 각 RAS는 서로 다른 Preamble을 사용하므로 단말은 Preamble detection을 통해 기지국을 구분할 수 있다. 본 논문에서는 휴대인터넷을 이용한 무선측위의 해상도 및 가청성을 현장실험을 통하여 분석한다. 현재 상용화 되어 사용중인Wibro 신호를 기저대역으로 낮추고 이 신호를 디지타이저를 사용하여 20MHz의 샘플링 주파수로 수집한다. 5msec 주기의 Wibro프레임 중에서 Preamble을 Correlation detection 기법을 사용하여 기지국과 단말 사이의 relative delay를 측정하여 기지국들과 단말 사이의 거리의 차를 구한다. 거리측정치를 이용하여 Wibro 망에서의 무선측위 추정치를 구하고 해상도와 정확도 및 가청성 등의 Wibro의 측위성능을 분석한다.

  • PDF

2D Backtracking Method of Ultrasonic Signal (초음파 신호의 2차원 역추적 방법에 관한 연구)

  • Kyu-Joung Lee;Choong Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • In this paper, 2-dimensional backtracking method for ultrasonic signals. Ultrasonic sensors are a common technology used in industrial fields as many studies have been conducted on distance measurement and indoor location tracking using transmission and reception devices in pairs. A method for tracking a signal of an arbitrary ultrasonic transmission device on a 2D plane using only a receiver of an ultrasonic signal is proposed. In order to track the ultrasonic signal, the receiver receives the signal by making at least three. The three receivers may calculate a direction and a distance using a time difference in which the ultrasound reception sound is reached. The existing method of tracking signal sources using ultrasonic waves has a problem of time synchronization of devices because the transceivers must be paired or installed independently for each sensor. In order to solve this problem, the distance of the ultrasonic receiver is minimized, and it is configured as one device. The sensor installed as one device may be processed by one operator, thereby solving the time synchronization problem. To increase time difference accuracy, high-speed 32-bit timers with high time resolution can be used to quickly calculate and track distances and directions.

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

A frequency Domain based High Resolution Positioning Method using Low Rate ADC in LR-WPAN (LR-WPAN에서 저속 ADC를 이용한 주파수 영역상의 고해상 무선 측위 기법)

  • Lee, Won-Cheol;Park, Woon-Yong;Hong, Yun-Gi;Choi, Sung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.145-152
    • /
    • 2009
  • Ultra-wideband communication systems for impulse radio have merits that are possible for either high resolution ranging system or radio determination. Conventionally, in order to accomplish these functions, the rapid analog to digital convertor (ADC) is necessary to apply radio determination system operating in time domain. However, considering that low rate - wireless personal area network (LR-WPAN) aims to low-cost hardware implementation, the expensive ADC converting GHz sampling per second is not appropriate. So, this paper introduces the high resolution ranging system operating in frequency domain with using low sampling rate ADC, and a new non-coherent ranging scheme utilizing analog Frequency Modulation (FM) mode for the frequency domain transformation. To verify the superiority of the proposed ranging algorithm working in frequency domain, the suggested IEEE 802.15.4a TG channel model is used to exploit affirmative features of the proposed algorithm with conducting the simulation results.