• Title/Summary/Keyword: TD-GC-MS

Search Result 14, Processing Time 0.016 seconds

Emission Properties of Volatile Compounds from Medicine Herb Residues Board (한약재 찌꺼기로 제조한 한방보드의 휘발성 성분의 방출 특성)

  • Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.430-439
    • /
    • 2016
  • Medicine herb residues boards were manufactured by using medicine herb residues, and emission properties of volatile compounds from boards were examined under various temperature conditions. The volatile compounds were identified with analysis of TD GC/MS by absorbing their flavor components in Tenax tubes. Total 88 volatile compounds were identified from the board. The number of identified compounds at temperature conditions of $25^{\circ}C$, $35^{\circ}C$, and $45^{\circ}C$ were 44, 55, and 65 kinds, respectively. The number of volatile compounds and the total peak area tended to increase with an increase in the temperature. The number of the flavor components detected in all temperature conditions were 34 kinds. Hydrocarbon compounds showed 93% of the detected flavor compounds at $25^{\circ}C$, 92% at $35^{\circ}C$, and 90% at $45^{\circ}C$. Ether compounds accounted for 4% and ketone, aldehyde, and acid-type compounds were detected in a small quantity. The hydrocarbons were composed of 17 kinds of monoterpenes and 39 kinds of sesquiterpenes, which accounted for 11% and 80%, respectively. The most detected compound of monoterpene was limonene, and the major flavor components of sesquiterpenes were ${\alpha}-curcumene$, zingiberene, ${\beta}-elemene$, ${\beta}-selinene$, ${\alpha}-amorphene$, and ${\alpha}-copaene$. Anethole (3.26%) known for ether compounds was detected considerably in all temperature conditions. The results suggest that the manufactured medicine herb residues board include various types of flavor compounds and the flavor compounds might be useful for the manufacture of various products.

Vertical Distribution of PAHs Concentrations in the Aerosol (대기 연직별 에어로졸 내 PAHs 농도분포 특성)

  • Hwang, Eun Jin;Ahn, Kang Ho;Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • Air samples were collected at various altitudes (from 165 to 1153 m) to observe vertical distribution of particulate PAHs concentrations using a very compact and light particle sampling package developed by Eun et al.(2013). TD-GC-MS developed by Hwang et al.(2014) was applied to PAHs analysis for effective analysis of PAHs contained trace amounts in the samples. The ranges of total PAHs concentrations were from 6.95 to $96.0ng\;m^{-3}$ on the ground and from 3.75 to $21.74ng\;m^{-3}$ at high altitude, respectively. All of particulate PAHs concentrations measured on the ground were higher than those measured at high altitude, while, the profile of individual PAH compounds between the ground and high altitude samples were similar. It means the distribution of particulate PAHs concentrations at high altitude were affected by the emission of PAHs emitted from ground.

Emission characteristics of volatile organic compounds released from spray products (생활 스프레이 제품의 안전성 조사: 벤젠과 톨루엔 함량을 중심으로)

  • Jo, Hyo-Jae;Kim, Bo-Won;Kim, Yong-Hyun;Lee, Min-Hee;Jo, Sang-Hee;Kim, Ki-Hyun;Kim, Joon-Young;Park, Jun-Ho;Oh, Soo-Min;Lee, Seung-Hwan;Kim, Dong-Yeon
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Many kinds of liquid spray products are used in livelihood activities these days. Spray products can be distinguished by the target to be sprayed (like into the air or on human skin (body)). Because human can be exposed to volatile organic compounds (VOC) emitted from spray products, some considerations on safety or hazard of spray products should be needed. In this study, emission characteristics of VOCs were investigated against 10 types of liquid spray products (6 skin spray and 4 air spray products). The concentrations of benzene and toluene were determined by gas chromatography/mass spectrometry (GC/MS) equipped with a thermal desorber (TD). Their average concentrations from 6 skin spray products exhibited$ 5.64{\pm}1.95$ ($mean{\pm}S.D$) and $8.52{\pm}2.89$ ppb(w), respectively. In contrast, those of 4 air spray samples had $7.30{\pm}1.31$ and $7.19{\pm}1.78$ ppb(w), respectively. If liquid contents in spray samples are completely vaporized in one cubic meter (1 m3) after spraying for 10 seconds, their mean concentrations of skin spray products are $31.7{\pm}8.80$ (benzene) and $50.5{\pm}17.1{\mu}g/Sm^3$ (toluene). In contrast, those of air spray products are $24.0{\pm}4.30$ (benzene) and $23.6{\pm}5.83{\mu}g/Sm^3$ (toluene). The estimated concentration levels of benzene from two types of products (31.7 and $24.0{\mu}/Sm^3$) exceeded the Korean atmospheric environmental guideline ($5{\mu}g/Sm^3$). The results of this study thus suggest that some measures should be made to reduce or suppress the contents of VOC in spray products.

Effects on Indoor Air Quality of Burning Chemicals (Scented Candles and Incense Sticks) (태우는 생활화학제품(향초와 인센스 스틱)의 사용이 실내 공기질에 미치는 영향)

  • Eun-Ah Park;Seungyeon Eo;Yerin Oh;Na-Youn Park;Myoungho Lee;Younglim Kho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Background: The use of scented candles and incense sticks, both of which are household products that are burned for indoor deodorization and calming effects, is increasing. Fine dust has been designated as a group 1 carcinogen by the International Agency for Research on Cancer. Volatile organic compounds (VOCs) affect air pollution and can cause diseases. Objectives: This study aims to determine the effect on indoor air quality by measuring PM2.5 and VOCs generated when burning scented candles and incense sticks. Methods: Scented candles and incense sticks were selected as household products to burn. As for the target sample, top-selling products (five types of scented candles, five types of incense sticks) were purchased online. The PM2.5 concentration according to time was measured immediately next to the sample and three meters away from each other in an enclosed space using a real-time aerosol photometer. VOCs were collected as samples under the same conditions using Tenax tubes and were quantitatively analyzed by TD-GC/MS. Results: In the case of scented candles, the concentration of PM2.5 did not increase during combustion and after being extinguished by placing a cover on the candle. For the incense sticks, the concentration of PM2.5 averaged 1,901.27 ㎍/m3. After burning scented candles and incense sticks, some VOCs concentrations were increased such as ethyl acetate and BTEX (benzene, toluene, ethylbenzene, xylene). Conclusions: Therefore, when using scented candles, extinguishment by placing a cover on the candle can be expected to reduce PM2.5. It is advisable to avoid using incense sticks because PM2.5 concentration increases from the start of combustion.