• Title/Summary/Keyword: TCUD법

Search Result 4, Processing Time 0.019 seconds

Initial Shape Analysis of 3 Dimensional Suspension Bridges using Improved TCUD Methods (개선된 TCUD법을 이용한 3차원 현수교의 초기형상해석)

  • Jo, Kyeong-Sik;Kim, Min;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.78-81
    • /
    • 2011
  • 본 논문에서는 개선된 TCUD(Improved TCUD, I.TCUD)법 및 개선된 초기부재력법(Improved Initial Force Methods, I.IFM)을 이용하여 3차원 현수교의 초기형상해석을 수행하였다. 절점평형법에 의하여 초기 평형상태를 결정하고, 이때 계산된 무응력장을 초기값으로 입력하여 비선형 해석을 수행하여 나온 값을 초기값으로 하여 해석을 반복한다. 이를 통하여 간단한 수치 해석 기법인 I.IFM이 정밀한 I.TCUD법과 비교하여 근접한 결과를 나타내는 것을 수치예제를 통하여 확인하였다.

  • PDF

Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges (사장교 시스템의 실용적인 초기형상 결정법)

  • Song, Yo-Han;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • A rational method for determination of initial cable forces in cable-stayed bridges without complicated nonlinear analysis is presented. Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and vending moments of the deck and pylon. A presented method utilizing the idea of force equilibrium organizes initial shape analysis for each types of cable-stayed bridges. The results of that analysis were compared to several existing methods for 2D numerical examples. And for 3D actual bridges, the improved TCUD method was performed to demonstrate the accuracy of this study.

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Comparison Study of An Improved Initial Force and TCUD Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 개선된 초기부재력법 및 TCUD법의 비교연구)

  • Kim, Dong-Yeong;Jo, Kyeong-Sik;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and bending moments of the deck and pylon. Comparison study of an improved initial force method and TCUD method for determination of initial cable forces in cable-stayed bridges is presented in this paper. For this purpose, an elastic catenary cable element and a nonlinear frame element are firstly described. And concepts and algorithm of two analysis methods are then presented. Finally to demonstrate the validity and the accuracy of two methods, numerical examples for initial state problems of cable-stayed bridges are given and compared based on these methods.