• Title/Summary/Keyword: TCP congestion control

Search Result 289, Processing Time 0.021 seconds

Performance Lmprovements of Self-Similar Traffic Congestion Control of Multiple Time Scale Under in TCP-MT network (TCP-MT 네트워크에서 다중 시간 간격을 이용한 자기유사성 트래픽 혼잡제어 성능개선)

  • Na Ha-Sun;Kim Moon-Hwan;Ra Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1239-1247
    • /
    • 2005
  • It is important to improve TCP performance in Self-similar TCP network where signalling between the same end nodes through bidirectional traffic routes. In wireless link, the traffic limitation pattern occurred in two or more TCP connections is applied into MPEC video control as multi time-interval congestion control. For TCP update variable, we extend TCP and perform as function call, and we study a method of relating TCP with LTS module controlling with the information type that is overcoming the limit of feedback loop determined by RTT. For comparison, we measure the TCP throughput without LTS and verify the fairness by means of meta control. The improved TCP performance is shown by that the number of connections of traffic congestion control increases when RTT increases.

TCP Delayed Window Update Mechanism for Fighting the Bufferbloat

  • Wang, Min;Yuan, Lingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4977-4996
    • /
    • 2016
  • The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.

RTT based TCP Design and Implementation for USN (USN을 위한 RTT 기반 TCP 설계 및 구현)

  • Yi, Hyun-Chul;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.774-779
    • /
    • 2012
  • We design and implement a RTT (Round Trip Time) based TCP (Transmission Control Protocol) for USN (Ubiquitous Sensor Network). We adopt a basic update algorithm for window size from FAST TCP that uses the queuing delay at link as the congestion measure. The designed TCP estimates the queuing delay at link from the measured RTT in the network layer, and updates the window size based on the estimated queuing delay. The designed TCP allows to utilize the full capacity of USN links and avoids the waste of the given link capacity that is common without the flow control in the transport layer. The experiment results show that the window size of the sender converges within a small range of variations without any packet loss, and verify the stability and performance of the designed TCP.

An improved performance of TCP traffic connection congestion control in wireless networks (무선네트워크에서 TCP 트래픽 연결 혼잡제어에 관한 성능 개선)

  • Ra Sang-dong;Na Ha-sun;Park Dong-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we verified that the window based TCP performance of throughput can be improved by the traffic connection efficiency. and have studied the performance of traffic congestion control that is controlling transmission rate. In wireless network, the bidirectional node is run by estimating the usage rate of link of error control idle and the throughput is shown by transmitting segments. The throughput rate shows almost no delay due to the bidirectional traffic connection efficiency up to the allowable point as increasing the transport rate by the critical value, depending on the size of end-to-end node queue of the increase of transport rate. This paper reports the performance improvement as the number of feedback connection traffic congestion control increases because of the increase of the number of asynchronous transport TCP connections.

TCP Performance Enhancement over the Wireless Networks by Using CPC and ZWSC (CPC와 ZWSC를 이용한 무선 망에서의 TCP 성능 향상 방안)

  • Lee, Myung-Sub;Park, Young-Min;Chang, Joo-Seok;Park, Chang-Hyeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • With the original Transmission Control Protocol(TCP) design, which is particularly targeted at the wired networks, a packet loss is assumed to be caused by the network congestion. In the wireless environment where the chances to lose packets due to transmission bit errors are not negligible, though, this assumption may result in unnecessary TCP performance degradation. In these days, many papers describe about wireless-TCP which has suggested how to avoid congestion control when packet loss over the wireless network. In this paper, an enhancement scheme is proposed by modifying SNOOP scheme. To enhance the original SNOOP scheme, CPC(Consecutive Packet Control) and ZWSC(Zero Window Size Control) are added. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss. We use simulation to compare the overhead and the performance of the proposed schemes, and to show that the proposed schemes improve the TCP performance compares to SNOOP by knowing the cause of packet loss at the base station.

  • PDF

TCP Performance Improvement Using Cross-Layer Design in MANET Environments (MANET 환경에서 크로스레이어 디자인을 이용한 TCP 성능 개선에 관한 연구)

  • Nam, Ho-Seok;Lee, Tae-Hoon;Do, Jae-Hwan;Kim, Jun-Nyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.767-774
    • /
    • 2008
  • With the development of ubiquitous sensor networks, the need for communication among mobile nodes has been increased. When the existing TCP is applied to MANET, link failure, route change and network partition make TCP recognize congestion. As a result, TCP shows a poor performance. In this paper, using cross-layer design a new TCP congestion control algorithm that is suitable for MANET is designed and analyzed with ns2.

TCP Performance Improvement Scheme Using 802.11 MAC MIB in the Wireless Environment (무선 환경에서 802.11 MAC의 MIB 정보를 이용한 TCP 성능 개선 방법)

  • Shin, Kwang-Sik;Kim, Ki-Won;Yoon, Jun-Chul;Kim, Kyung-Sub;Jang, Mun-Suck;Choi, Sang-Bang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.477-487
    • /
    • 2008
  • Congestion control of the TCP reduces transmission rate when it detects packet loss because packet loss origines from congestion in the wired network. In the wireless network, packet loss comes from channel errors. Wired TCP degrades performance when there are wireless losses because it does not classify type of loss. These day, there are many researches which classify type of loss between congestion loss and wireless loss for wired-wireless hybrid network. For wireless TCP, many of existing algorithms are based on the estimated bandwidth or variations of packet arrival time. In this paper, we propose a new TCP scheme to distinguish the wireless packet losses from the congestion packet losses using MIB of the IEEE 802.11 MAC. We perform excessive simulations using the NS-2 network simulator and analyze the simulation results to compare the performance of the proposed algorithm to other well-known algorithms. From simulation results, we know that proposed algorithm improves performance about 12% and 32% compared with Spike algorithm and mBiaz algorithm, respectively.

TCP-RLDM : Receiver-oriented Congestion Control by Differentiation for Congestion and Wireless Losses (TCP-RLDM: Congestion losses과 Wireless losses 구별을 통한 수신측 기반 혼잡제어 방안)

  • 노경택;이기영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.127-132
    • /
    • 2002
  • This paper aims to adjust the window size according to the network condition that the sender determines by making the receiver participating in the congestion levels. TCP-RLDM has the measurement-based transmission strategy based on the data-receiving rate complementing TCP with the property of Additive Increase / Multiplicative Decrease. The protocol can make an performance improvement by responding differently according to the property of errors-whether congestion losses or transient transmission errors - to confront dynamically in heterogeneous environments with wired or wireless networks and delay-sensitive or -tolerant applications. By collecting data-receiving rate and the cause of errors from the receiver and by enabling sender to use the congestion avoidance strategy before occuring congestion possibly, the protocol works well at variable network environments.

  • PDF

PAQM: an Adaptive and Proactive Queue Management for end-to-end TCP Congestion Control

  • Ryu Seung Wan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.417-424
    • /
    • 2003
  • In this paper, we introduce and analyze a feedback control model of TCP/AQM dynamics. Then, we propose the Pro-active Queue Management (PAQM) mechanism, which can provide proactive congestion avoidance and control using an adaptive congestion indicator and a control function for wide range of traffic environments. The PAQM stabilizes the queue length around a desired level while giving smooth and low packet loss rates independent of the traffic load level under a wide range of traffic environment. The PAQM outperforms other AQM algorithms such as Random Early Detection (RED) [1] and PI-controller [2]

  • PDF

Performance and Fairness Analyses of a STA/LTA based Internet Congestion Algorithm

  • Chung, Young-Jun;Song, Hwa-Sun;Joo, Sang-Yeol
    • International Journal of Reliability and Applications
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2002
  • Traffic congestion is one of critical factors in Internet applications to guarantee their QoS and provide reliable services. This paper discusses many existing congestion control algorithms and proposes a new ISDA. The algorithm is analyzed in respect of queue length, throughput and fairness. The proposed algorithm is working well with TCP and UDP traffics to offer QoS guarantee and fairness.

  • PDF