• Title/Summary/Keyword: TCP Performance

Search Result 724, Processing Time 0.024 seconds

TCP Performance Analysis over Mobile ad-hoc Networks (모바일 ad-hoc 네트워크에서 TCP 성능 분석)

  • Nam, Ho-Seok;Cho, Sol;Lee, Tae-Hoon;Kim, Jun-Nyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.800-808
    • /
    • 2007
  • With the development of wireless data communication technology, all IP-based network will become compositions of wired and wireless networks. TCP is a connection-oriented, reliable transport protocol and has been used as de facto standard in most wired networks. Because TCP's congestion control algorithm could not distinguish congestion from BER, link failure and frequent route changes, TCP shows a poor performance over mobile ad-hoc networks. In this paper, the theoretical feature of TCP was studied and the performance of TCP over mobile ad-hoc networks was analyzed with ns2.

Improving TCP Performance through Pre-detection of Route Failure in Mobile Ad Hoc Networks (Ad Hoc 망에서 경로단절 사전감지를 통한 TCP 성능향상)

  • Lee Byoung-Yeul;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.900-910
    • /
    • 2004
  • Route failure is mainly caused by mobility of mobile host in ad hoc networks. Route failure, which may lead to sudden packet losses and delays, is losing the route from source to destination. In this situation, TCP assumes that congestion has occurred within the network and also initiates the congestion control procedures. Congestion control algorithm provides the means for the source to deal with lost packets. TCP performance in ad hoc environments will be degraded as TCP source cannot distinguish congestion from route failure. In this paper, we propose TCP-P as pre-detection approach to deal with route failure. TCP-P freezes TCP through pre-detection of route failure. Route failure information of the proposed mechanism is obtained not by routing protocol but by MAC protocol. The intermediated node, obtaining route failure information by its MAC layer, relays the information to TCP source and lets TCP source stop the congestion control algorithm. Results reveal that TCP-P responding with proactive manner outperforms other approaches in terms of communication throughput under the presence of node mobility.

Receiver-Initiated Slow Start for Improving TCP Performance in Vertical Handoff (수직적 핸드오프에서의 TCP 성능향상을 위한 수신자기반 슬로우스타트)

  • Seok, Woojin;Lee, Minsun;Lee, Manhee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.597-606
    • /
    • 2013
  • The performance of TCP depends on the degree of traffic congestion between the sender and the receiver. The traffic could increase, and this causes congestion which may cause trouble in data transfer. Then, TCP tries to eliminate the trouble by reducing the transfer speed with slowstart scheme. When a mobile node moves over heterogeneous wireless networks, TCP experiences dramatic change of the amount of traffic, and it performs slowstart. In this paper, we propose the efficient scheme of TCP slowstart that should performs after vertical handoff. In this scheme, TCP receiver forces slowstart, which is different form normal schemes. Its performance is better than the normal schemes in that TCP sender experiences traffic congestion and performs slowstart. We perform simulation to measure and to verify the improved performance.

Enhancements to the fast recovery Algorithm of TCP NewReno using rapid loss detection (빠른 손실 감지를 통한 TCP NewReno의 Fast Recovery 개선 알고리듬)

  • 김동민;김범준;김석규;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.650-659
    • /
    • 2004
  • Domestic wireless network environment is changing rapidly while adapting to meet service requirements of users and growth of market. As a result, reliable data transmission using TCP is also expected to increase. Since TCP assumes that it is used in wired networt TCP suffers significant performance degradation over wireless network where packet losses are not always result of network congestion. Especially RTO imposes a great performance degradation of TCP. In this paper, we propose DAC$^{+}$ and EFR in order to prevent performance degradation by quickly detecting and recovering loss without RTO during fast recovery. Compared with TCP NewReno, proposed scheme shows improvements in steady-state in terms of higher fast recovery Probability and reduced response time.

A TCP Performance Enhancement Scheme in Wireless Mesh Networks (무선 메쉬 네트워크에서 TCP 성능 향상 기법)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1139-1145
    • /
    • 2010
  • Wireless mesh network is similar to ad-hoc network, so when transferred to the data packet in the wireless environment, interfered factor arise. When TCP(Transport Control Protocol) was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem that TCP unfairness and congestion collapse over wireless mesh network. But packet losses due to transmission errors are more frequent. The cause of transmission error in wireless ad-hoc network may be inexactly regarded as indications of network congestion. And then, Congestion Control Algorithm was running by this situation causes the TCP performance degradation. In this paper, proposed TCP can adaptively regulate the congestion window through moving node in the Wireless Mesh Network. And it enhanced the performance.

Improving Loss Recovery Performance of TCP SACK by Retransmission Loss Recovery (재전송 손실 복구를 통한 TCP SACK의 성능 향상 모델링 및 분석)

  • 김범준;김동민;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.667-674
    • /
    • 2004
  • The performance of transmission control protocol (TCP) is largely dependent upon its loss recovery. Therefore, it is a very important issue whether the packet losses may be recovered without retransmission timeout (RTO) or not. Although TCP SACK can recover multiple packet losses in a window, it cannot avoid RTO if a retransmitted packet is lost again. In order to alleviate this problem, we propose a simple change to TCP SACK, which is called TCP SACK+ in simple. We use a stochastic model to evaluate the performance of TCP SACK+, and compare it with TCP SACK. Numerical results evaluated by simulations show that SACK+ can improve the loss recovery of TCP SACK significantly in presence of random losses.

Performance Lmprovements of Self-Similar Traffic Congestion Control of Multiple Time Scale Under in TCP-MT network (TCP-MT 네트워크에서 다중 시간 간격을 이용한 자기유사성 트래픽 혼잡제어 성능개선)

  • Na Ha-Sun;Kim Moon-Hwan;Ra Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1239-1247
    • /
    • 2005
  • It is important to improve TCP performance in Self-similar TCP network where signalling between the same end nodes through bidirectional traffic routes. In wireless link, the traffic limitation pattern occurred in two or more TCP connections is applied into MPEC video control as multi time-interval congestion control. For TCP update variable, we extend TCP and perform as function call, and we study a method of relating TCP with LTS module controlling with the information type that is overcoming the limit of feedback loop determined by RTT. For comparison, we measure the TCP throughput without LTS and verify the fairness by means of meta control. The improved TCP performance is shown by that the number of connections of traffic congestion control increases when RTT increases.

A Study on the Performance Improvement of TCP using ABR/UBR Services (ABR/UBR 서비스를 이용한 TCP 성능개선에 관한 연구)

  • 김명희;박봉주;박승섭
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.643-651
    • /
    • 2000
  • ATM network technology is generally used for the integration of multimedia services in high-speed Internet. ABR (Available Bit Rate) and UBR (Unspecified Bit Rate) service classes have been developed specifically to support data application. In this paper, through the result of simulation, we analyzed the effect of TCP data transmission performance by using FRR (Fast Retransmission and Recovery) and Nagle's Algorithm on the UBR service, and by adjusting EFCI switch parameter on the ABR service. As a result of our study, performance improvement of TCP over ATM network is observed by adjusting TCP parameters and setting of effective switch parameter.

  • PDF

The Congestion Control using Selective Slope Control under Multiple Time Scale of TCP (TCP의 다중 시간 간격에서 선택적 기울기 제어를 이용한 혼잡 제어)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Lim, Se-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. If source traffic is not extended exceeding, when RTT is 450ms, in self similar burst environment, performance gain of TCP-SSC is up to 45% for ${\alpha}$=1.05. However, its is acquired only 20% performance gain for ${\alpha}$=1.95 relatively. Therefore we showed that by TCP-MTS at large time scale into a rate-based feedback congestion control, we are able to improve two times performance significantly.

  • PDF

Mean Transfer Time for SCTP and TCP in Single-homed Environment considering Packet Loss (싱글홈드 환경에서 패킷 손실을 고려한 SCTP와 TCP의 평균 전송 시간)

  • Kim, Ju-Hyun;Lee, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.233-248
    • /
    • 2008
  • Stream Control Transmission Protocol(SCTP) is a new transport protocol that is known to provide improved performance than Transmission Control Protocol(TCP) in multi-homing environment that is having two and more IP addresses. But currently single-homed computer is used primarily that is having one IP address. To identify whether mean transfer time for SCTP is faster that for TCP in single-homed environment considering packet loss, we make up real testbed regulating the bandwidth, delay time and packet loss rate on router and observe the transfer time. We write server and client applications to measure SCTP and TCP mean transfer time by C language. Analysis of these experimental results from the testbed implementation shows that mean transfer time of SCTP is not better than performance of TCP in single homed environment exceptional case. Main reasons of performance are that SCTP compared to TCP stops transmitting data by timeout and data transmission is often delayed when SACK congestion happens. The result of study shows that elaborate performance tuning is required in developing a new SCTP module or using a implemented SCTP module.