• Title/Summary/Keyword: TCLP leaching

Search Result 50, Processing Time 0.028 seconds

Comparison of Heavy Metals Analysis in Sediment (호소내 퇴적물의 중금속 분석 비교)

  • Park, Sun-Ku;Song, Ki-Bong;Cho, Ki-Hwan
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • The study was carried out to analyze the pollutant Fe, Cu, Cr, Zn, Cd for sediments collected from lake in K river basin. Three analytical methods currently used in Korea, Japan, U.S.A, were compared. Pretreatment using microwave digestion showed higher analytical results for Fe, Cu, Cr, Zn, Cd than Korean Official Method(KOM) and American Toxicity Characteristic Leaching Procedure(TCLP) Method. Also, analytical results using microwave digestion, TCLP and KOM were as follows: 38.1-48.0 mgFe/kg, 10.2-15.9 mgFe/kg AND 3.5-12.6 mgFe/kg, 37.0-50.1 mgCu/kg, 0.06-0.24 mgCu/kg and 0.01-0.03 mgCu/kg, 137.0-152.0 mgZn/kg, 0.67-0.82 mgZn/kg and 0.3-0.5 mgZn/kg, respectively. From this result, a new analytical method for the determination of heavy metal in sediment should be developed for the accurate estimation of pollution degree in sediment.

  • PDF

$Cr^{6+}$ leaching property of cement using high performance lignin (고성능 혼화제를 이용한 시멘트의 $Cr^{6+}$ 용출특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.135-143
    • /
    • 2009
  • To study possibility of $Cr^{6+}$ solid solution and efficiency of admixture, leaching property of Portland cement mortar was investigated by using KSLT (Korea Standard Leaching Test), TCLP (Toxicity Characteristic Leaching Procedure), Soacking procedure, as adding excess $Cr^{6+}$. As a result, admixture of lignin type showed high compressive strength of mortar but no changing leaching property.

A Comparative Study for Leaching Characteristics of Specified By-Products due to Changes in Acid Neutralization Capacities (지정부산물의 산중화능력변화에 따른 용출특성 비교연구)

  • 이현경;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.206-209
    • /
    • 2001
  • This study presents the leaching characterization of heavy metals according to changes of pH by ANC test on slag produced in electric arc furnace, bottom ash produced in coal-fired plants and their recycling products. Availability test was performed to assess the fraction of the total concentration that under worst environmental conditions could become available for leaching. TCLP, KLT(Korea Leaching Test) and KLTS(Korea Leaching Test of Soil contamination) were carried out to compare the leaching capacity and to estimate the adequacy of regulatory leaching test. Results from regulatory leaching tests could be misleading because the variable ANC of wastes can lead to very different final leachate pHs. The final pH of the regulatory test is not the ambient pH in the disposal environment, the actual solubilities of contaminants in the field may be entirely different from those predicted by these regulatory tests. Leaching behaviour of by-products was changed by recycling processes, therefore acid neutralization capacity and availability of new products, not leaching concentration by one batch regulatory test, are necessary to determine the method of recycling.

  • PDF

Recycling of the Bottom Ash, Sourced from the Local MSW (Municipal Solid Waste) Incinerators, as a Fine Sand for Concrete (소각장(燒却場)에서 발생되는 바닥재의 콘크리트용 잔골재(骨材)로서의 재활용(再活用))

  • Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.40-47
    • /
    • 2007
  • This paper described recycling of the bottom ash, sourced from the local incinerators as a fine sand for concrete. 10% bottom ash was substituted for the ordinary beach sand in the mortar(on a weigh basis), in conjunction with the pozzolznic diatomite. The specimens were tested according to KS L 5105 and analysed by TCLP(Toxic Chemical Leaching Procedure). The results showed that the hazardous heavy metals in the bottom ash are within the maximum permissible limit of TCLP. The compressive strength of the mortar with 10% bottom ash was highly improved, compared to the control mortar when the pozzolanic diatomite was used. It revealed that the hazardous heavy metals of the mortar with 10% bottom ash were leached within the maximum permissible limit of TCLP. It was concluded that the bottom ash can be reused as a fine sand for concrete when the pozzolanic diatomite was used as a stabilizer.

Heavy Metal Leaching Characteristics of Sludge from Paper Mill Process with Sintering Temperature (소성온도에 따른 제지공정 슬러지의 중금속 용출특성 연구)

  • Park, Joon-Seok;Ko, Jae-Churl;Kim, Seung-Ho;Park, Young-Koo;Jeon, Jea-Yeoul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This research was performed to evaluate heavy metal leaching characteristics of the sludge from paper mill process with sintering temperature. Heavy metal leaching of the sludge was characterized with Korean Leaching Test and Toxicity Characteristic Leaching Procedure. The test sludge was composed of 70.72% of moisture, 9.5% of volatile solids and 9.76% of fixed solids. As a result of XRF analysis, Fe was the highest inorganic element in approximately 83%, which implies the recycling possibility of the sludge in reuse of Fenton chemicals and artificial lightweight aggregate. Leaching of heavy metals from sintered sludge was lower than the dry ones. However, there was no significant difference in leaching characteristics between the sludges sintered at $350^{\circ}C$ and $650^{\circ}C$. Zn and Fe were leached more greatly in TCLP and KLT methods respectively.

Assessment of Environmental Contamination caused by the Stone-dust using Leaching Tests (용출실험에 의한 석분토의 지표환경 오염 평가)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Youm, Seung-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.52-60
    • /
    • 2010
  • The stone-dust is an unavoidable by-product of aggregate production, which is produced about 0.8~1.0 million $m^3$ annually. The stone-dust is currently regarded as a hazard material on environment because it is classified as an industrial waste in the Waste Management Law of Korea. At present, the stone-dust is considered as a environmentally hazardous material, and is classified as an industrial waste according to the Waste Management Law of Korea. In this study, we assessed the heavy-metal contamination of the stone-dust on surrounding environments by various leaching tests. Leaching experiments (such as Korea Standard Leaching Procedure (KSLP), Soil Environment Preservation Act of Korea (SEPAK), Toxicity Characteristic Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP)) show that very low heavy metals (As, Cd, Cu, Pb, Zn, Hg) and CN are leached out, or much less than each regulatory thresholds. The resuts of the leaching test with time in acidic solution (initial pH 5 and 3) indicate that pH-buffering minerals are present in the stone-dust. These results suggest that the stone-dust can not potentially affect adverse impact on surrounding environments such as surface water, groundwater and soil etc..

Environmental Assessment of Vitrified Mine Tailing Aggregate Using Various Leaching Methods (고농도 중금속 함유 광미를 이용한 유리화 처리 골재의 장기 용출특성에 따른 환경안전성 평가)

  • Lee, Sang-Woo;Chun, Sa-Ho;Lee, Ki-Kang;Lee, Sanghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Vitrified aggregates obtained by using mine tailings were evaluated using various leaching methods to assess their environmental safety. The leaching tests in this study include continuous batch leaching, Dutch availability leaching, pH-stat and tank diffusion test as well as TCLP (Toxicity Characteristic Leaching Procedure), which is commonly adopted. Vitrification technique has successfully been applied treating some solid wastes containing high level of heavy metals, such as EAF (Electric Arc Furnace) dust and mine tailings. The potentially most leachable element among trace metals was As and theoretically about 7% of total concentrations in the aggregate can be released under extreme condition. Zinc was leached about 4% and the other trace metals including Cd, Cr and Pb were hardly released from the vitrified mine tailing aggregate.

Stabilization Behavior of Heavy Metals in the EAF Dust-clay Body Mixtures at Various Sintering Conditions (점토계소지내에서 전기로 더스트 중금속의 소성 온도별 안정화거동)

  • Kwon, Yong-Joon;Kim, Yoo-Taek;Lee, Gi-Gang;Kim, Young-Jin;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.728-734
    • /
    • 2002
  • Stabilization behavior of Cr, Cd, Cu, Pb, Fe and Zn heavy metals in the EAF dust was investigated by adding EAF dust to clay or white clay, respectively, up to 50 wt% with 10 wt% intervals and sintering at temperatures between 200 and $1200^{\circ}C$ with $200^{\circ}C$ intervals with an aid of ICP-AES followed by TCLP test to evaluate heavy metal cation exchange capacity of the clay or the white clay. The clay or the white clay had a better Cr ion exchange capacity than that of zeolite. The TCLP leaching test for the sintered specimens showed that Cr and Fe were rarely detected for all the specimens and the concentration of Cd and Zn decreased with increasing sintering temperature and decreasing EAF dust contents respectively. When the clay or the white clay were mixed with EAF dust, cation exchange may occur between the clay and the EAF dust so that the first stabilization of the mixtures containing semistabilized heavy metals may happen. Stabilization of heavy metals in the ceramic bodies was further completed probably due to the eutectic reaction caused by the sintering of semi-stabilized mixtures. It was conceivable that the white clay rather than the clay may be a better stabilizer for the EAF dust containing heavy metals.

The Characteristics of Compressive Strength and Leachability on Solidification of Chromium Tannery Sludge adding to Coal Fly Ash (비산회를 첨가한 피혁공장 크롬 슬러지의 고화시 압축강도 및 용출 특성)

  • 주소영;연익준;신필식;전병진;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • In this study, the heavy metals in tannery sludge were solidified by using cement and power plant fly ash. Solidification characteristics were discussed with the compressive strength and chromium leaching characteristics of solids. The compressive strength of cement mortar was increased by the amount of fly ash up to 24.3~33.8%, which was considered the results of pozzolanic reaction. When the content of fly ash was 20%, cement mortar showed the highest value $295kg/\textrm{cm}^2$ for 28 days curing. At early curing days, solidified chromium tannery sludge solids were showed lower compressive strength because of the retard on the hydration of cement, but the compressive strength was recovered to be more than $140kg/\textrm{cm}^2$ for 28 days curing regardless with the amounts of fly ash. Also, the results of leaching tests by KSM and TCLP method were showed that the solidified chromium sludge have leached out 0.3~2.2% and 11~17%, respectively.

  • PDF

Stabilization of Heavy Metals in Contaminated Marine Sediment using Bentonite (벤토나이트에 의한 해양오염퇴적물 내 중금속 안정화 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2014
  • In this study, stabilization treatment of heavy metals such as Ni, Cu, Pb, and Zn in contaminated marine sediment was achieved using bentonite. Stabilization experiment was accomplished by wet-curing with bentonite for 150 days. From the sequential extraction results of heavy metals, it was observed that the easily extractable fraction (exchangeable, carbonate, and oxides forms) of Ni, Cu, Pb, and Zn in a treated sediment decreased to 8.5%, 5.6%, 19.2%, and 28.2%, respectively, compared with untreated sediment. Moreover, the TCLP(Toxicity Characteristic Leaching Procedure) results evaluating efficiency of extraction reduction of heavy metals showed that extraction of heavy metals reduced drastically to 95.7%, 96.8%, 99.2%, 85.9% for Ni, Cu, Pb, and Zn by stabilization when compared to untreated sediment. From these results, we can confirm that bentonite as a capping material exhibits good stabilization of heavy metals in contaminated marine sediment.