• Title/Summary/Keyword: TCE degrading enzyme

Search Result 2, Processing Time 0.017 seconds

Confirmation of Trichloroethylene-Degrading Enzyme from a Phenol-Degrading Bacterium, Pseudomonas sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J로부터 Trichloroethylene 분해효소의 확인)

  • Park, Geun-Tae;Kim, Ho-Sung;Son, Hong-Ju;Lee, Gun;Park, Sung-Hoon;Lee, Sang-Jun
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.561-565
    • /
    • 2002
  • Pseudomonas sp. EL-041 was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). In this study, we report the identification of trichloroethylene- degrading enzyme in Pseudomonas sp. EL-041 by the investigation of enzyme activity and DNA sequencing of specific phenol oxygenase gene. As the results of experiment, trichloroethylene-degrading enzyme in Pseudomonas sp. EL-041 was monooxygenase and suspected to phenol hydroxylase.

가스상 TCE 처리를 위한 추출막 생물반응기의 수학적 모사

  • Kim, Ji-Seok;Kim, Gwan-Su;Jang, Deok-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.370-373
    • /
    • 2000
  • In this work, an extractive membrane bioreactor containing coulture broth of Burkholderia cepacia G4 PR1 constitutively expressing the TCE-degrading enzyme, tolune-ortho-monooxygenase(TOM), was used for the degradation of TCE. The membrane bioreactor operates by seperating the TCE-containing waste gas from the aerated biomedium, by which the air-stripping of TCE without degradation was overcome that could occur in conventional aerobic biological treatments of TCE-contaminated waste gases. This was achieved by a silicone rubber membrane which was coiled around a perspex draft tube. TCE from the gas phase diffuses across the silicone rubber membrane into microbial culture broth that was continuously fed from a separate aerobic CSTR. Therefore, TCE degradation occured without the TCE being directly exposed to the aerating gas stream. Of the TCE supplied to the membrane bioreactor, 72.6% was biodegraded during the operation of this system. To construct a mathematical model for this system, parameters describing microbial growth kinetics on TCE were determined using a CSTR bioreactor. Else parameters used for numerical simulation were determined from either indepedent experiments or values reported in the literature. The model was compared with the experimental data, and there was a good agreement between the predicted and the measured TCE concentrations in the system. To achieve a higher treatment efficiency, various operating conditions were simulated as well.

  • PDF