• 제목/요약/키워드: TCA cycle

검색결과 78건 처리시간 0.032초

Bacillus subtilis SNU816의 合成培地에서의 성장과 포자형성을 위한 Biotin 要求性에 관하여 (Biotin Requirement for the Growth and Sporulation of Bacillus subtilis SNU816 in a Synthetic medium)

  • 이오병
    • 미생물학회지
    • /
    • 제22권3호
    • /
    • pp.135-142
    • /
    • 1984
  • The effect of biotin on the growth and sporulation of Bacillus subtilis SNU816 was investigated. When B. subtilis SNU816 was cultured on glucose as a sole carbon source, the growth was retarded markedly and usually ceased at early log phawe. But by addition of biotin to this medium, normal, rapid growth was restored. The growth rate was increased proportionally according to the concentration of exogenous biotin until it reached to 0.05㎍/ml, at which about three fold rapid growth was achieved. Also biotin was required for optimum sporulation for it facilitated the complete utilization of both glucose(Glc) and glutamic acid(Glu). Without biotin in Glc+Glu medium, about 40% of glutamic acid was remained unutilized. The dipicolinic acid content of cells cultured in Glc+Glu medium without biotin was markedly small and sporulation was suppressed before free spore release. Since biotin could be partiallyreplaced by one of TCA cycle intermediates such as oxalacetic acid, citric acid, or glutamic acid in enhancing growth in Glc medium, it was postulated that this strain might have a defect in converting pyruvate to oxalacetate which process is known to be mediated by pyruvate carboxylase that requires biotin as a cofactor.

  • PDF

Metabolic Rebalancing of CR6 Interaction Factor 1-Deficient Mouse Embryonic Fibroblasts: A Mass Spectrometry-Based Metabolic Analysis

  • Tadi, Surendar;Kim, Soung Jung;Ryu, Min Jeong;Park, Taeseong;Jeong, Ji-Seon;Kim, Young Hwan;Kweon, Gi Ryang;Shong, Minho;Yim, Yong-Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.35-41
    • /
    • 2013
  • Metabolic analysis of CR6 interacting factor 1 (Crif1) deficient mouse embryonic fibroblasts with impaired oxidative phosphorylation has been carried out using LC-MS/MS and GC-MS methods. Metabolic profiles of the Crif1 deficient cells were comprehensively obtained for the first time. Loss of oxidative phosphorylation functions in mitochondria resulted in cancer-like metabolic reprogramming with consumption of majority of glucose carbon from up-regulated glycolysis to produce lactate, suppressed utilization of glucose carbon in the TCA cycle, increased amounts of amino acids. The changes in metabolic profile of the Crif1 deficient cells are most probably a consequence of metabolic reprogramming to meet the needs of energy balance and anabolic precursors in compensation for the loss of major oxidative phosphorylation functions.

Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.53-61
    • /
    • 2000
  • Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

  • PDF

Dynamic Gene Expression Profiling of Escherichia coli in Carbon Source Transition from Glucose to Acetate

  • Oh Min-Kyu;Cha Mee-Jeong;Lee Sun-Gu;Rohlin Lars;Liao James C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.543-549
    • /
    • 2006
  • DNA microarray was used to study the transcription profiling of Escherichia coli adapting to acetate as a sole carbon source. Bacteria grown in glucose minimal media were used as a reference. The dynamic expression levels of 3,497 genes were monitored at seven time points during this adaptation. Among the central metabolic genes, the glycolytic and glucose phosphotransferase genes were repressed as the bacteria entered stationary phase, whereas the glyoxylate pathway, TCA cycle, and gluconeogenic genes were induced. Distinct induction or repression patterns were recognized among different pathway genes. For example, the repression of glycolytic genes and the induction of gluconeogenic ones started immediately after glucose was depleted. On the other hand, the regulation of the pentose phosphate pathway genes and glyoxylate genes gradually responded to the glucose depletion or was more related to growth in acetate. When the whole genome was considered, many of the CRP, FadR, and Cra regulons were immediately responsive to the glucose depletion, whereas the $\sigma^s$, Lrp, and IHF regulons were gradually responsive to the glucose depletion. The expression profiling also provided differential regulations between isoenzymes; for example, malic enzymes A (sfcA) and B (maeB). The expression profiles of three genes were confirmed with RT-PCR.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Alteration of the Metabolome Profile in Endothelial Cells by Overexpression of miR-143/145

  • Wang, Wenshuo;Yang, Ye;Wang, Yiqing;Pang, Liewen;Huang, Jiechun;Tao, Hongyue;Sun, Xiaotian;Liu, Chen
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.572-578
    • /
    • 2016
  • Communication between endothelial cells (ECs) and smooth muscle cells (SMCs) via miR-143/145 clusters is vital to vascular stability. Previous research demonstrates that miR-143/145 released from ECs can regulate SMC proliferation and migration. In addition, a recent study has found that SMCs also have the capability of manipulating EC function via miR-143/145. In the present study, we artificially increased the expression of miR-143/145 in ECs, to mimic a similar change caused by miR-143/145 released by SMCs, and applied untargeted metabolomics analysis, aimed at investigating the consequential effect of miR-143/145 overexpression. Our results showed that miR-143/145 overexpression alters the levels of metabolites involved in energy production, DNA methylation, and oxidative stress. These changed metabolites indicate that metabolic pathways, such as the SAM cycle and TCA cycle, exhibit significant differences from the norm with miR-143/145 overexpression.

Partial Purification of Protein X from the Pyruvate Dehydrogenase Complex of Bovine Kidney

  • 류재하;허재욱;홍성열;송병준
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.260-260
    • /
    • 1994
  • Mammalian pyruvate dehydrogenase complex(PDC) enzyme consists of multiple oopies of three major oligomeric enzymes-El, E2 E3. And protein X is one of the enzymatic constituents which is tightly bound to E2 subunit This complex enzyme is responsible for the oxidative decarboxylation of pyruvate producing of acetyl CoA which is a key intermediate for the entry of carbohydrates into the TCA cycle for its complete metabolic conversion to CO$_2$. And the overall activity of the complex enzyme is regulated via covalent nodification of El subunit by a El specific phosphatase ad kinase. Protein X has lipoyl moiety that undergoes reduction and acetylation during ezymatic reaction and has been known h be involved in the binding of E3 subunit to E2 core and in the regulatory activity of kinase. The purification of protein X has not been achieved majorly because of its tight binding to E2 subunit The E2-protein X subcomplex was obtained by the established methods and the detachment of protein X from E2 was accomplished in the 0.1M borate buffer containing 150mM NaCl. During the storage of the subcomplex in frozen state at -70$^{\circ}C$, the E2 subunit was precipitated and the dissociated protein X was obtained by cntrifegation into the supernatant The verification of protein X was accomplished by (1)the migration on SDS-PAGE, (2)acetylation by 〔2$\^$-l4/C〕 pyruvate, and (3)internal amino acid sequence analysis of tryptic digested enzyme.

  • PDF

Investigation of Regulatory Mechanism of Flux of Acetyl-CoA in Alcaligenes eutrophus Using PHB-negative Mutant and Transformants Harboring Cloned phbCAB Genes

  • Jung, Young-Mi;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.215-222
    • /
    • 1997
  • The regulatory mechanism of the flux of acetyl-CoA in Alcaligenes eutrophus in unbalanced growth conditions was investigated using a PHB-negative mutant and transformants reintroduced PHB-biosynthesis enzymes through the transformation of cloned phbCAB genes. The PHB-negative mutant was defected absolutly in PHB synthase but partially in ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, and excreted substantial amount of pyruvate to culture broth at late growth phase. The excretion was due to the inhibitory effect of acetyl-CoA on the activity of pyruvate dehydrogenase. The cloned phbC and phbCAB genes were transformed to the PHB-negative mutant strain to reintroduce PHB biosythesis enzymes. Pyruvate excretion could be decreased substantially but not completely by transformation of PHB synthase alone, while pyruvate excretion was ceased by transformation of all three PHB biosynthesis enzymes. To identify the most critical PHB biosynthesis enzyme influencing on the flux of acetyl-CoA, the effect of the variation of PHB biosynthesis enzymes on pyruvate dehydrogenase was investigated. ${\beta}$-Ketothiolase influenced the activity of pyruvate dehydrogenase more sensitively than PHB synthase. ${\beta}$-Ketothiolase, the first step enzyme of PHB biosynthesis that condense acetyl-CoA to acetoacetyl-CoA, seems to be the major enzyme determining the flux of acetyl-CoA to PHB biosynthesis or TCA cycle, and the rate of PHB biosynthesis in A. eutrophus.

  • PDF

Identification of a Gene for Aerobic Growth with a SoxS Binding Sequence in Escherichia coli by Operon Fusion Techniques

  • Lee, Yong-Chan;Kwon, Hyung-Bae;Lee, Sang-Ho;Kwon, Hye-Won;Sung, Ha-Chin;Kim, Joon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1115-1119
    • /
    • 2001
  • Eight Escherichia coli cells with aerobic growth deflects were isolated by the insertion of ${\lambda}placMu53$, a hybrid bacteriophage of ${\lambda}$ and Mu, which created transcriptional fusion to lacZY. Two of these mutants, CLIO and CLl2, were irradiated with UV to obtain specialized transducing phages. The phages that took out the neighboring chromosomal DNA of the related gene responsible for deflective aerobic growth were identified. The in vivo cloned chromosomal sequence revealed that the mutated gene of CLIO was located at min 34.5 on the Escherichia coli linkage map and 1,599,515 on the physical map. The physical map indicated that there were 7 cistrons in the operon. We named this operon oxg10. The promoter sequence of oxg10 exhibited a possible binding site far SoxS, a transcriptional regulator that activates the transcription of various SoxRS regulon genes. Transferring the oxg10:: ${\lambda}placMu53$ mutation into the wild-type strain, RZ4500, resulted in the inhibition of normal aerobic growth, while the salute mutation in strain MO inhibited aerobic cell growth completely. The full operon sequences of oxg10 were cloned from the Excherichia coli genomic library. The mutated gene of CLl2 was identified to be a sucA gene encoding the ${\alpha}$-ketoglutarate dehydrogenase El component in the TCA cycle.

  • PDF