• Title/Summary/Keyword: TBM Tunnel

Search Result 274, Processing Time 0.02 seconds

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.

Development and Application of the Assessment System of TBM Tunnelling Procedure (TBM 터널 공정 분석시스템의 개발 및 적용)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.455-464
    • /
    • 2003
  • Four assessment systems for planning and evaluation of TBM tunnelling are discussed, and their characteristics and input data are analyzed. Two of the systems are determined to be adequate for post-evaluation of TBM performance because the time, such as repair time, downtime, installation time and transport time, must be included for calculations. The others are adequate for pre-planning because the basic data of the systems consist of only the basic properties of rocks and rock masses, and the specification of TBM. In order to apply these assessment systems, a number of equations, graphs and charts are generally required, which seems to be very inconvenient and complicated. In this study, therefore, a user-friendly program operated on Windows system is developed, and each system can be selected by the corresponding input data. It will be possible fer tunnel engineers to select a system according to their objectives and available input data, and to apply the system to TBM tunnel project.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.

Evaluation of the rock property around TBM tunnels using seismic reflective survey data and TBM driving data

  • Aoki Kenji;Mito Yoshitada;Yamamoto Takuji;Shirasage Suguru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.288-295
    • /
    • 2003
  • The relationship between the reflection number obtained from seismic reflective survey and the rock strength value obtained from TBM excavation is examined, and the procedure of the conversion from the reflection number to the rock strength value is proposed. Subsequently, geostatistical method is employed to evaluate the rock properties ahead of the tunnel face and around the tunnel with good precision, using both the seismic reflective survey data and the TBM driving data for the purpose of the tunnel driving and enlargement. The applicability of this evaluation method is examined at the actual tunnel site.

  • PDF

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM (TBM 주변 지반상태예측을 위한 전기비저항 이론식 유도 및 검증)

  • Hong, Chang-Ho;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

Development of simulation equipment system on EPB shield TBM hood operation (토압식 쉴드TBM의 후드부 시뮬레이션 장비 시스템 개발에 대한 연구)

  • Kim, Sang-Hwan;Oh, Tae-Sang;Park, Soo-Hwan;Lee, Choong-Yeoul;Park, Jong-Kwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This paper presents the development of simulation system on EPB shield TBM Hood operation. In recent, EPB shield TBM is widely used in the tunnel construction. Since the hood system of the EPB shield TBM is most important to excavate the tunnel, it is necessary to perform the simulation of hood system to investigate the design and operation parameters prior to tunnel construction. In order to carry out this study, the scaled simulation system was designed and developed. The model tests were performed to verify the developed system. During the simulation, the earth pressures developed in the chamber during tunnelling were measured to evaluate the operation technique. The test results obtained by the developed simulation system show clearly the similar behaviour of TBM hood compared with the field data. It was also found that the ground loss during tunnelling is dependent on the change of earth pressure in chamber. Therefore, the simulation system developed in this study will be very useful to evaluate the operation technique of the TBM hood prior to tunnel construction. In addition, this system will be applied in a various condition of ground to get the operating information.

Application of TBM/TBE to Mechanical Excavation in Rock (암반기계굴착공법의 적용연구)

  • Park, Chul-Hwan;Kim, Kil-Soo
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.177-189
    • /
    • 1992
  • As tunnel becomes longer and larger, TBM has become one of the most popular methods of excavatio in rock. This paper describes the degree of operation the degree of availability and penetration rate of TBM and TBE applied in Namsan roadway tunnelling site. Net penetration rate was 1.62m/hr for TBM and 0.72m/hr for TBE. Net penetration rate showed no direct relation to daily advance or penetration time, but the lower bound of penetration rate could be obtained from the relation with daily advance. For both of TBM and TBE, the degree of operation and the degree of availability were 33.8% and 68.6% respectively. Life time of normal cutter was $310m^3$ for TBM and $194m^3$ for TBE, while that of center and gauge cutter was about $50m^3$. When the two machines were compared, TBM showed 80% higher penetration rate, and 40% shorter life time of cutter.

  • PDF

A study on numerical modeling method considering gap parameter and backfill grouting of the shield TBM tunnel (쉴드 TBM 터널의 gap parameter와 뒤채움재를 고려한 수치모델링 방법에 대한 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Backfill grouting and realistic convergence distribution were not properly considered in previous studies on 2D numerical analysis of a shield TBM tunnel. In this study, a modeling method was suggested to cope with this problem by considering a realistic convergence distribution and proper properties of backfill grouting. To this end, the influence of gap parameter and depth of rock cover on volume loss and composed of ground volume loss around tunnel excavation and surface volume loss were analyzed with a single layer of weathered soil. As a result, most of surface settlements were occurred immediately after excavation. Additional, as depth of rock cover and gap parameter increased, the influence range of surface settlement curves obtained from 2D numerical analyses became broader than a suggested theoretical equation. Therefore, it is inferred that gap parameter should be applied based on load distribution ratio and the property of backfill grouting properly considered for the estimation of the precise behavior of a shield TBM tunnel in 2D numerical analysis.

Forward probing utilizing electrical resistivity and induced polarization for predicting mixed-ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 복합지반 예측 기법)

  • Ryu, Jinwoo;Park, Jinho;Lee, Seong-Won;Lee, In-Mo;Kim, Byung-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.55-72
    • /
    • 2018
  • A method that can predict the mixed-ground condition ahead of a TBM tunnel face during tunnel construction utilizing electrical resistivity and induced polarization (IP) was proposed in this study. Effect of TBM advancement approaching the mixed-ground condition (composed of soil layer overlying rock layer) when currently running through soil zone on the electrical resistivity and IP measuring was assessed with laboratory-scale experiments. The resistivity and IP values were measured using four electrodes, by installing two electrodes on the tunnel face (at the cutterhead), and the other two electrodes on the segment lining. The test results showed that both of the measured resistivity and IP values were kept increasing as the TBM is approaching the soil-rock mixed-ground. Also, to get the more reliable results for predicting the mixed-ground condition, it was recommended that the measurement is made at the tunnel face utilizing 4-electrodes installed at the cutterhead as well as it is made utilizing the 2-electrodes installed at the segment lining along with the 2-electrodes installed on the tunnel face (at the cutterhead) so that two measured results are compared each other.

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.