• 제목/요약/키워드: TBA(tert-butyl alcohol)

검색결과 16건 처리시간 0.026초

다양한 토양 환경에서 Methyl tert-Butyl Ether와 그의 대사산물이 노출되었을 때 미생물 군집에 미치는 영향: 논, 밭, 갯벌 시료 비교 (Effect of Methyl tert-butyl Ether and Its Metabolites on the Microbial Population: Comparison of Soil Samples from Rice Field, Leek Patch and Tidal Mud Flat)

  • 조원실;조경숙
    • 한국환경보건학회지
    • /
    • 제34권6호
    • /
    • pp.403-413
    • /
    • 2008
  • Toxic effect of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on microbial activity and diversity was compared in rice field, leek patch, and tidal mud flat soil samples. MTBE, TBA and FA with different concentrations were added into microcosms containing these soil samples, and placed at room temperature for 30 days. Then the microbial activities such as dehydrogenase and viable cell numbers and microbial community using a DGGE (Denaturing gradient gel electrophoresis) fingerprinting method were measured. Among the samples, dehydrogenase activity in rice field was inhibited the most by MTBE, TBA and FA. The toxic effect was higher according to the following orders: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE, TBA and FA were Chloroflex, Bacilli, gamma-proteobacteria in the rice field sample, Sphingobacteria, Flavobacteria, Actinobacteria, Bacilli, gamma-proteobacteria in the leek patch sample, and Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria in the tidal mud flat sample.

갯벌 미생물 활성 및 다양성에 미치는 Methyl tert-Butyl Ether(MTBE)와 MTBE 대사산물의 영향 (Effect of Methyl tert-Butyl Ether and Its Metabolites on Microbial Activity and Diversity in Tidal Mud Flat)

  • 조원실;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제36권4호
    • /
    • pp.336-342
    • /
    • 2008
  • 갯벌 토양 내 미생물 군집에 미치는 methyl tert-butyl ether(MTBE)와 그의 대사산물인 tert-butyl alcohol(TBA) and formaldehyde(FA)의 영향을 조사하였다. 서로 다른 농도의 MTBE, TBA 및 FA를 갯벌 토양 microcosm에 첨가한 후 30일 간 실온에 방치했다. Microcosm 시료의 pH, 수분함량, 유기물 함량 등의 물리 화학적 특성을 측정하였다. 총 세균수와 탈수소 효소 활성변화를 측정하였고, 미생물 군집 구조는 16S rRNA-PCR-DGGE(Denaturing gradient gel electrophoresis) fingerprinting 기법을 이용해 모니터링 했다. 그 결과, MTBE, TBA 및 FA 첨가 농도와 물리 화학적 요인들 사이에는 상관관계가 없었다(P>0.05). 탈수소효소 활성과 총 세균수는 MTBE, TBA 및 FA 농도가 증가 될수록 감소하였다(P<0.05). 각각의 독성 물질들이 미생물 활성에 저해 영향을 주었으며 이들의 저해 정도는 FA > MTBE > TBA 순이었다. MTBE, TBA 및 FA 노출 후 군집의 우점종을 살펴 본 결과 Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria로 크게 네 그룹으로 이뤄졌다. 미생물 군집의 다양성 지수는 MTBE및 대사산물의 주입농도의 영향을 받지 않았다.

산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향 (Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests)

  • 조원실;조경숙
    • 한국환경보건학회지
    • /
    • 제34권5호
    • /
    • pp.387-394
    • /
    • 2008
  • The toxicity of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on the indigenous microbial community in forest soil was studied. MTBE, TBA and FA with different concentrations were added into microcosms containing forest soil samples. After 10 and 30 days, total viable cell number and dehydrogenase activity in the microcosms were evaluated. Bacterial communities in the microcosms were also analyzed using a denaturing gradient gel electrophoresis (DGGE). Dehydrogenase activity and total viable cell number were decreased according to the increase of MTBE, TBA and FA concentrations (P<0.05). FA toxicity was the highest, but TBA toxicity was the lowest. The results of principal component analysis using DGGE fingerprints showed that the microbial communities contaminated MTBE, TBA and FA were grouped by exposure time not exposure concentration. Dominant species in the microcosms were as follows: Photobacterium damselae sub sp. and Bacillus sp. KAR28 for MTBE; Mycobacterium sp. and Uncultured Clostridium sp. for TBA; and Uncultured Paenibacillaceae bacterium and Anxynobacillus, Flavithermus for FA.

부탄 이용 미생물에 의한 MTBE(Methyl tert-Butyl Ether) 분해 특성

  • 장순용;백승식;이시진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.136-139
    • /
    • 2001
  • In this study, we have examined potential degradation of MTBE (methy1 tert-butyl ether) by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown n-butane, and the disappearance of TBA after complete degradation of MTBE suggest the further degradation of TBA. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane-utilizing bacteria. MTBE was degraded ENV425 and mixed culture grown n-butane, and TBA (tert-butyl alcohol) was produced as product of MTBE oxidation. TBA production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. The observed maximal transformation yield (T$_{y}$) were 44.7 and 34.0 (nmol MTRE degraded/$\mu$mol n-butane Utilized) by ENV425 and mixed culture, respectively.y.

  • PDF

동결건조 공정에서 Tert-butyl alcohol 기공형성제가 텅스텐 다공체의 기공구조에 미치는 영향 (Effect of Tert-Butyl Alcohol Template on the Pore Structure of Porous Tungsten in Freeze Drying Process)

  • 이의선;허연지;고윤택;박진경;좌용호;오승탁
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.216-220
    • /
    • 2021
  • The effect of tert-butyl alcohol (TBA) as a freezing solvent on the pore structure of a porous tungsten body prepared by freeze-drying is analyzed. TBA slurries with a WO3 content of 10 vol% are prepared by mixing with a small amount of dispersant and binder at 30℃. The slurries are frozen at -25℃, and pores are formed in the frozen specimens by the sublimation of TBA during drying in air. After hydrogen reduction at 800℃ and sintering at 1000℃, the green body of WO3 is completely converted to porous W with various pore structures. Directional pores from the center of the specimen to the outside are observed in the sintered bodies because of the columnar growth of TBA. A decrease in pore directionality and porosity is observed in the specimens prepared by long-duration drying and sintering. The change in pore structure is explained by the growth of the freezing solvent and densification.

고체산 촉매에 의한 가솔린 옥탄가 향상제인 ETBE (Ethyl tert-Butyl Ether) 합성 (Solid Acid Catalyzed Formation of ETBE(Ethyl tert-Butyl Ether) as an Octane Enhancer for Gasoline)

  • 박남국;김재승;서성규;오영열
    • 공업화학
    • /
    • 제4권1호
    • /
    • pp.162-170
    • /
    • 1993
  • TBA(tert-butyl alcohol)와 ethanol로부터 고체산 촉매상에서 가솔린 옥탄가 향상제인 ETBE(ethyl tert-butyl ether)의 기상 합성반응에 관하여 연구하였다. 헤테로폴리산 촉매가 제올라이트계 촉매보다 활성이 우수하였으며, $H_4SiW_{12}O_{40}$촉매는 현재 공업적으로 이용되고 있는 Amberlyst-15 수지촉매의 대체가능성을 보였다. 또한 전이금속 양이온으로 교환된 헤테로폴리산 촉매는 수소환원에 의한 새로운 산점의 생성 및 증가에 따라 촉매활성이 크게 증가되었다. 이러한 수소환원 효과는 촉매의 환원특성과 관계되며, 환원 용이성은 $Ag^+$>$Cu^{2+}$>$Fe^{2+}$의 순서였다.

  • PDF

Mo/SiO2 촉매상에서 t-Butyl hydroperoxide에 의한 염화알릴의 에폭시화반응에 관한 속도론적 연구 (Kinetic Study on the Epoxidation of Allyl Chloride by t-Butyl Hydroperoxide over Mo/SiO2 Catalyst)

  • 김성우;박대원;정종식;박대철
    • 공업화학
    • /
    • 제3권4호
    • /
    • pp.649-656
    • /
    • 1992
  • t-Butyl hydroperoxide(TBHP)에 의한 염화알릴의 에폭시화에 의해서 에피클로로히드린을 합성하는데 실리카에 담지된 몰리브데늄 촉매를 사용하였다. 속도론적 연구는 회분 반응기를 사용하여 $60-80^{\circ}C$, 10기압에서 TBHP/염화알릴의 농도비를 0.01-0.1의 범위내에서 수행하였다. t-butyl alcohol(TBA)에 의해서 염화알릴의 에폭시화 반응이 억제되었고, 반응속도는 Michaelis-Menten 형태의 속도식으로 표현할 수 있었다. 반응기구는 TBHP와 TBA의 가역흡착과 $Mo/SiO_2$에 흡착된 TBHP와 염화알릴의 표면반응으로 설명할 수 있었다.

  • PDF

Analysis of tert-Butanol, Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Kim, Tae-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.3049-3052
    • /
    • 2009
  • Methyl tert-butyl ether (MTBE) is added to gasoline to enhance the octane number of gasoline, tert-butyl alcohol (TBA) is major degradation intermediate of MTBE in environment, and benzene, toluene, ethyl benzene and xylene (BTEX) are also major constituents of gasoline. In this study, a simplified headspace analysis method was adapted for simultaneous determination of MTBE, TBA and BTEX in ground water samples. The sample 5.0 mL and 2 g NaCl were placed in a 10 mL vial and the solution was spiked with fluorobenzene as an internal standard and sealed with a cap. The vial was placed in a heating block at 85 $^{\circ}C$ for 30 min. The detection limits of the assay were 0.01 ${\mu}$g/L for MTBE and BTEX, and 0.02 ${\mu}$g/L for TBA. The method was used to analyze 110 ground water samples from various regions in Korea, and to survey the their background concentration in ground water in Korea. The samples revealed MTBE concentrations in the range of 0.01 - 0.45 ${\mu}$g/L (detection frequency of 57.3%), TBA concentrations in the range of 0.02 - 0.08 ${\mu}$g/L (detection frequency of 5.5%), and total BTEX concentrations in the range of 0.01 - 2.09 ${\mu}$g/L (detection frequency of 87.3%). The developed method may be used when simultaneously determining the amount of MTBE, TBA and BTEX in water.

부탄분해미생물에 의한 가솔린첨가제 MTBE(Methyl tert-Butyl Ether) 분해 (Biodegradation of Gasoline Oxygenate MTBE(Methyl tert-Butyl Ether) by Butane-Utilizing Bacteria)

  • 장순웅;백승식;이시진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권3호
    • /
    • pp.31-41
    • /
    • 2001
  • 본 논문에서는 순수균주인 ENV425와 오염된 토양으로부터 분리한 혼합균주를 이용하여 가솔린 산화제인 MTBE에 대한 분해 가능성을 조사했다. MTBE는 n-butane에서 성장한 ENV425와 혼합균주에 의해 공대사적으로 분해가 이루어졌다. 또한 아세틸렌의 첨가에 의해 n-butane과 MTBE의 분해가 완전히 방해되어짐에 따라 두 기질 모두 부탄 분해 효소에 의해 분해되어짐을 알 수 있었다. n-butane에서 성장한 ENV42S와 혼합균주는 MTBE를 분해하고, MTBE의 분해산물로 TBA가 생성되었다. TBA의 생성은 분해된 MTBE에 대하여 ENV425와 혼합균주 각각 54.7%, 58.6%가 관찰되었다. 그러나, Resting cell 실험에서는 ENV425와 혼합균주에 의한 산화 생성물로 TBA와 TBF가 생성되었다. ENV425와 혼합균주에 의한 최대 MTBE 분해속도는 각각 52.3 그리고 62.3 (nmol MTBE degraded/hr/mg TSS), 최대 $T_y$ (Transformation yield)는 각각 44.7, 34.0 (nmol MTBE degraded/$\mu$mol n-butane utilized)으로 나타났고, 최대 $T_c$ (Transformation capacity)는 각각 199, 226 (nmol MTBE degraded/mg TSS used)으로 나타났다.

  • PDF

Determination of MTBE, TBA and BTEX in Soil by Headspace Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1693-1698
    • /
    • 2012
  • A headspace gas chromatographic mass spectrometric (GC-MS) assay method was developed for the simultaneous determination of methyl tertiary butyl ether (MTBE), $tert$-butyl alcohol (TBA) and benzene, toluene, ethyl benzene and xylene (BTEX) in soil contaminated with gasoline. 2 g of soil sample were placed in a 10 mL headspace vial filled with 5 mL of phosphoric acid solution (pH 3) saturated with NaCl, and the solution was spiked with fluorobenzene as an internal standard and sealed with a cap. The vial was heated in a heating block for 40 min at $80^{\circ}C$. The detection limits of the assay were 0.08-0.12 ${\mu}g$/kg for the analytes. For five independent determinations at 10 and 50 ${\mu}g$/kg, the relative standard deviations were less than 10%. The method was used to analyze fifty six soil samples collected from various regions contaminated with gasoline in Korea. The developed method may be valuable for the monitoring of the analytes in soil.