• Title/Summary/Keyword: TAXA

Search Result 2,163, Processing Time 0.029 seconds

Analysis and evaluation of morphological and molecular polymorphism in the hybridization of Elaeagnus ×maritima and E. ×submacrophylla (잡종 기원 녹보리똥나무와 큰보리장나무의 형태학적 및 분자적 다양성 분석 및 평가)

  • Young-Jong JANG;Dong Chan SON;Kang-Hyup LEE;Jung-Hyun LEE;Boem Kyun PARK
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.126-147
    • /
    • 2023
  • The taxonomic identity of Elaeagnus ×maritima and E. ×submacrophylla (Elaeagnaceae) in Korea is unclear, yet they are presumed to be hybrid taxa based on their morphology. To determine their hybrid origins, a morphological analysis (field surveys and specimen examinations) and a molecular analysis involving two nuclear ribosomal DNA (nrDNA) regions (internal transcribed spacer and 5S non-transcribed spacer) and one chloroplast DNA (cpDNA) region (matK) were conducted. The morphological analysis revealed that E. ×maritima showed certain morphological similarities to E. glabra, whereas E. ×submacrophylla showed certain morphological similarities to E. pungens. However, the molecular analysis indicated that E. ×maritima exhibited additive species-specific sites of E. glabra and E. macrophylla in the nrDNA regions. Notably, E. ×submacrophylla showed various aspects, with some individuals exhibiting additive species-specific sites of E. pungens and E. macrophylla in the nrDNA and E. macrophylla sequences in the cpDNA regions, some individuals exhibiting E. macrophylla sequences in the nrDNA and E. pungens sequences in the cpDNA regions, and some individuals displaying E. macrophylla sequences in both the nrDNA and cpDNA regions, despite an intermediate morphology between E. pungens and E. macrophylla. These results indicate that these two species are of hybrid origin and frequently cross between parental and hybrid individuals.

Summer Dynamics of Phytoplankton Taxonomic Composition in a Coastal Estuarine System of Asan Bay (아산만 연안하구 식물플랑크톤의 2006년 하계 종조성 변화)

  • Yi, Hyang-Hwa;Shin, Yong-Sik;Yang, Sung-Ryull;Park, Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.200-210
    • /
    • 2007
  • Phytoplankton community was investigated in Asan Bay, South Korea. Samples were collected at 5 stations along Asan Bay axis during wet season from June to August, 2006. In June and July, salinity decreased especially at inside stations. Nutrients were high in June and July, however, decreased in August. We observed the community of phytoplankton including diatoms(62.8%), dinoflagellates(17.3%), cryptophytes(14.8%), euglenophytes(1.0%), cyanophytes (0.9%), chlorophytes(0.4%), and some of unidentified taxa(2.8%) during summer 2006 in Asan Bay. In June, dinoflagellates (mainly Prorocentrum sp.(29.6%)) were dominated, accounting for about 43.5% of total cell number, whereas in July and August diatoms (mainly Leptocylindrus sp.(21.4%), Chaetoceros sp.(27.6%)) were dominated occupying 69.1% and 89.9%, respectively. The results suggest that freshwater inputs affected phytoplankton community in the Asan Bay ecosystem.

Two New Records of Alien Species Including New Section of Sagina L. (Caryophyllaceae) Recorded from the Republic of Korea (개미자리속 Saginella절 식물의 새로운 미기록종 보고: 선개미자리, 민개미자리(석죽과))

  • Se Ryeong Lee;Beom Kyun Park;Kang-Hyup Lee;Dong Chan Son
    • Korean Journal of Plant Resources
    • /
    • v.37 no.1
    • /
    • pp.22-34
    • /
    • 2024
  • Recently, in several regions of Korea, we discovered the occurrence of Sagina micropetala Rauschert and S. procumbens L. All the plants of the genus Sagina growing in Korea are 5-merous and belong to the sect. Spergella. However, the two taxa we discovered belong to the sect. Saginella and are 4-merous. In addition, morphological characteristics such as sepals during the fruiting season and seeds were significantly different from those of species of the genus Sagina that occur in Korea. To clearly identify these species, we compared and observed their primary morphological characteristics using illustrated books and literature. Morphologically, S. micropetala exhibits the following traits: pubescence along the leaf margin, horizontally spreading sepals with red margins, and convex protrusions on the seed surface. In contrast, S. procumbens can be distinguished by its pedicels, which are curved during the flowering season and erect during the fruiting season. This plant also has broadly ovate sepals with white or yellowish-green margins, and flat seed surface protrusions. In terms of molecular analyses, 19 samples of Sagina were divided into two clades (S. micropetala and S. procumbens), confirming the taxonomic identity of the Sagina spp.

Investigation of Variation in Bacterial Community Structure in Endangered Korean Fir Tree by Habitats (멸종위기종 구상나무 서식지별 세균 군집 구조 변이 조사)

  • Young Min Ko;Geun-Hye Gang;Dae Ho Jung;Youn-Sig Kwak
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • The Korean fir tree (Abies koreana), an endemic species of South Korea, is experiencing a severe decline in population due to climate change. Studies on the conservation of Korean fir have been extensive, yet research regarding its correlation with rhizosphere bacterial communities remains scarce, warranting further investigation. In this study, metagenome amplicon sequencing targeting the 16S rRNA V4 region was conducted to examine the presence of specific bacterial communities in Korean fir and to investigate potential differences based on habitat types (rhizosphere of native or cultivated trees, soil of dead trees, and bulk soil) and seasonal variations (April, June, September, November). Here we show that although we could not identify specific taxa highly specifically with Korean fir, the rhizosphere bacterial community in native trees exhibited less variability in response to seasonal changes compared to that in bulk soils. Suggesting the establishment of relatively stable bacterial populations around the Korean fir natural habitat. Further research on other types of rhizosphere and/or microbes is necessary to investigate the distinct relationship of Korean fir with microbial communities.

Intraspecific diversity and phylogeography of bony lip barb, Osteochilus vittatus, in Sundaland, as revealed by mitochondrial cytochrome oxidase I (mtCOI)

  • Imron Imron;Fajar Anggraeni;Wahyu Pamungkas;Huria Marnis;Yogi Himawan;Dessy Nurul Astuti;Flandrianto Sih Palimirmo;Otong Zenal Arifin;Jojo Subagja;Daniel Frikli Mokodongan;Rahmat Hidayat
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.145-158
    • /
    • 2024
  • Life history characteristics, habitat landscape, and historical events are believed to have shaped the patterns of genetic variation in many taxa. The bony lip barb, Osteohilus vittatus, represent a potamodromous fish that complete all life cycle in freshwater and is widely distributed in Southeast Asia. It usually lives in small rivers and other freshwater habitats, and movement between habitats for either food or reproduction has been typical. These life history characteristics may promote gene flow, leading to less structured populations. However, many freshwater habitats are fragmented, which restricts gene flow. We investigate how this interplay has shaped patterns of genetic variation and phylogeographic structure within this species in the Sundaland, a biodiversity hotspot with a complex geological history, using mitochondrial cytochrome oxidase I (mtCOI) as a genetic marker. Forty-six mtCOI sequences of 506 bp long were collected from ten localities, eight geographically isolated and two connected. The sequences were used for population genetic and phylogeographic analyses. Our results showed a low genetic diversity within populations but high between populations. There was a deep phylogeographic structure among geographically isolated populations but a lack of such structure in the connected habitats. Among geographically isolated populations, sequence divergence was revealed, ranging from 1.8% between Java and Sumatra populations to 12.2% between Malaysia and Vietnam. An indication of structuring was also observed among localities that are geographically closer but without connectivity. We conclude that despite high dispersal capacity, the joint effects of historical events, long-term geographic isolation associated with sea level oscillation during the Pleistocene, and restricted gene flow related to lack of habitat connectivity have shaped the phylogeographic structure within the O. vittatus over the Sundaland.

Seasonal Variations in Species Composition of Larval Fish Assemblage in the Coastal Waters off Uljin, East Sea (동해 울진 연안의 어류 자치어 종조성과 계절변동)

  • Joo Myun Park;Jong Hun Kim;Se Hun Myoung;Yun-Hwan Jung;Dae-Won Lee;Dong Mun Choi;Hee Gab Lee
    • Korean Journal of Ichthyology
    • /
    • v.36 no.2
    • /
    • pp.156-163
    • /
    • 2024
  • This study investigated the temporal patterns of species composition and abundance of larval fish assemblages through seasonal samplings in the coastal waters off Uljin, East Sea from April 2022 to February 2023. A total of 27 taxa of larval fishes were collected in the study area. The dominant fish larvae were Pseudopleuronectes herzensteini, Sebastes inermis, Ammodytes japonicus, Pseudopleuronectes yokohamae, Rudarius ercodes and Parablennius yatabei constituting 86.6% of total larval fish abundance. The number of species, abundance, and diversity index fluctuated according to season, showing the highest species number and abundance in April (spring) and diversity in July (summer). Larval fish assemblages were divided into three seasonal groups, including spring, summer and winter groups based on relative abundance of each fish larvae. Among abundant fish larvae, P. herzensteini predominated during spring, while P. yatabei and R. ercodes were abundant during summer. S. inermis, A. japonicus and P. yokohamae constituted the most abundant larval fish group during winter. These temporal changes in larval fish assemblages were attributed to seasonal changes in surface water temperature. The results from this study may elucidate our understanding of larval fish diversity and contribute to evaluating the nursery function of coastal habitats in the East Sea.

Impact of rumen cannulation surgery on rumen microbiota composition in Hanwoo steers

  • Minseok Kim;Tansol Park;Cheolju Park;Youl-Chang Baek;Ara Cho;Han Gyu Lee;Eunju Kim;Eun-Yeong Bok;Young-Hun Jung;Tai-Young Hur;Yoon Jung Do
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.353-365
    • /
    • 2024
  • Rumen cannulation is a surgical technique used to collect rumen contents from ruminants. However, rumen cannulation surgery may potentially impact the composition of the rumen microbiota. This study aimed to examine the longitudinal alterations in the rumen microbiota composition of Hanwoo steers after cannulation surgery. In this study, eight Hanwoo steers were used; four steers underwent rumen cannulation surgery (cannulation group), while the remaining four were left intact (control group). Rumen samples were collected from all eight steers using the stomach tubing method on the day before surgery (day 0) and on postoperative days 1, 4, 7, 10, 14, 17, 21, 24, and 28, resulting in 80 samples (10 timepoints × 8 animals). The microbiota of all 80 samples were analyzed using 16S rRNA gene amplicon sequencing with Quantitative Insights into Microbial Ecology version 2 (QIIME2). There were no significant differences (p > 0.05) in all major phyla and most major genera representing at least 0.5% of total sequences across all 80 samples between the control and cannulation groups on the preoperative and postoperative days. However, while the alpha diversity indices did not differ (p > 0.05) between the two groups on the preoperative day, they significantly differed (p < 0.05) between the two groups on the postoperative days. Further, the overall microbial distribution based on both unweighted and weighted principal coordinate analysis plots significantly differed (p < 0.05) between the two groups on both the preoperative and postoperative days. Orthogonal polynomial contrasts indicated that major genera and microbial diversity in the cannulation group decreased following surgery but returned to their initial states by postoperative day 28. In conclusion, this study demonstrates that rumen cannulation surgery affects some major taxa and microbial diversity, suggesting that the rumen cannulation method can alter the composition of rumen microbiota in Hanwoo steers.

Effects of diets for three growing stages by rumen inocula donors on in vitro rumen fermentation and microbiome

  • Ryukseok Kang;Huseong Lee;Hyeonsu Seon;Cheolju Park;Jaeyong Song;Joong Kook Park;Yong Kwan Kim;Minseok Kim;Tansol Park
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.523-542
    • /
    • 2024
  • Hanwoo and Jeju Black cattle (Jeju Black) are native breeds of Korean cattle. Jeju Black cattle are recognized as natural monuments and are known to exhibit slower growth rates compared to Hanwoo. While several studies have analyzed the genetic characteristics of these cattle, there has been limited research on the differences in their microbiome. In this study, rumen fluid was obtained from three Hanwoo steers and three Jeju Black steers, and three different diets (total mixed rations [TMRs] for growing, early fattening, and late fattening periods) were used as substrates for in vitro fermentation. The in vitro incubation was conducted for 3 h and 24 h following a 2 × 3 factorial arrangement. After both incubation periods, fermentation characteristics were analyzed, and ruminal microbiome analysis was performed using 16S rRNA gene sequencing, employing both QIIME2 and PICRUSt2. The results revealed significant differences in the ruminal microbiota due to the inoculum effect. At the phylum level, Patescibacteria and Synergistota were found to be enriched in the Jeju Black inoculum-treated group. Additionally, using different inocula also affected the relative abundance of major taxa, including Ruminococcus, Pseudoramibacter, Ruminococcaceae CAG-352, and the [Eubacterium] ruminantium group. These microbial differences induced by the inoculum may have originated from varying levels of domestication between the two subspecies of donor animals, which mainly influenced the fermentation and microbiome features in the early incubation stages, although this was only partially offset afterward. Furthermore, predicted commission numbers of microbial enzymes, some of which are involved in the biosynthesis of secondary metabolites, fatty acids, and alpha amylase, differed based on the inoculum effect. However, these differences may account for only a small proportion of the overall metabolic pathway. Conversely, diets were found to affect protein biosynthesis and its related metabolism, which showed differential abundance in the growing diet and were potentially linked to the growth-promoting effects in beef cattle during the growing period. In conclusion, this study demonstrated that using different inocula significantly affected in vitro fermentation characteristics and microbiome features, mainly in the early stages of incubation, with some effects persisting up to 24 h of incubation.

Development of Urban Wildlife Detection and Analysis Methodology Based on Camera Trapping Technique and YOLO-X Algorithm (카메라 트래핑 기법과 YOLO-X 알고리즘 기반의 도시 야생동물 탐지 및 분석방법론 개발)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Jeon, Seung-Wook;Song, Won-Kyong;Kim, Whee-Moon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.17-34
    • /
    • 2023
  • Camera trapping has been used as a non-invasive survey method that minimizes anthropogenic disturbance to ecosystems. Nevertheless, it is labor-intensive and time-consuming, requiring researchers to quantify species and populations. In this study, we aimed to improve the preprocessing of camera trapping data by utilizing an object detection algorithm. Wildlife monitoring using unmanned sensor cameras was conducted in a forested urban forest and a green space on a university campus in Cheonan City, Chungcheongnam-do, Korea. The collected camera trapping data were classified by a researcher to identify the occurrence of species. The data was then used to test the performance of the YOLO-X object detection algorithm for wildlife detection. The camera trapping resulted in 10,500 images of the urban forest and 51,974 images of green spaces on campus. Out of the total 62,474 images, 52,993 images (84.82%) were found to be false positives, while 9,481 images (15.18%) were found to contain wildlife. As a result of wildlife monitoring, 19 species of birds, 5 species of mammals, and 1 species of reptile were observed within the study area. In addition, there were statistically significant differences in the frequency of occurrence of the following species according to the type of urban greenery: Parus varius(t = -3.035, p < 0.01), Parus major(t = 2.112, p < 0.05), Passer montanus(t = 2.112, p < 0.05), Paradoxornis webbianus(t = 2.112, p < 0.05), Turdus hortulorum(t = -4.026, p < 0.001), and Sitta europaea(t = -2.189, p < 0.05). The detection performance of the YOLO-X model for wildlife occurrence was analyzed, and it successfully classified 94.2% of the camera trapping data. In particular, the number of true positive predictions was 7,809 images and the number of false negative predictions was 51,044 images. In this study, the object detection algorithm YOLO-X model was used to detect the presence of wildlife in the camera trapping data. In this study, the YOLO-X model was used with a filter activated to detect 10 specific animal taxa out of the 80 classes trained on the COCO dataset, without any additional training. In future studies, it is necessary to create and apply training data for key occurrence species to make the model suitable for wildlife monitoring.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.