• 제목/요약/키워드: TAS1R2 gene

검색결과 3건 처리시간 0.019초

한국인의 단맛수용체유전자 TAS1R2 다형성분석 및 일배체형 연구 (Genetic Polymorph isms and Haplotype Analysis of Sweet Taste Receptor TAS1R2 Gene in the Korean Population)

  • 이혜진;배재웅;권태준;사공보름;김언경
    • 생명과학회지
    • /
    • 제20권3호
    • /
    • pp.462-465
    • /
    • 2010
  • 단맛은 인간이 느낄 수 있는 다섯 가지 감각 중 하나로, 열량을 제공하며 식욕을 결정하는데 중요한 요인이다. 인간이 맛물질을 느끼는 민감도 차이에 유전적인 요인이 중요한 역할을 한다는 사실이 알려진 바, 본 연구에서는 한국인 98명을 대상으로 단맛을 결정하는 미각수용체 TAS1R2 유전자에 대해 염기서열분석법을 이용한 단일염기 다형성 종류 및 빈도, 그리고 일배체형 분석을 수행하였다. 그 결과, TAS1R2 유전자로부터 총 12종류의 SNP이 검출되었으며 약 70%는 아미노산 치환을 일으키는 변이로 확인되었다. 특히, 231번째와 950번째 변이는 본 연구를 통해 처음으로 발견된 새로운 것으로 한국인 집단에서 특이적으로 존재하는 SNP일 가능성이 높다고 판단된다. 일배체형 분석결과에 따르면, 발견된 20 종류 일배체형 중 세 가지가 주로 한국인이 가지는 것으로 확인되었다. 본 연구결과 발견된 TAS1R2 유전자의 SNP은 향후 단맛물질을 감지하는 인간의 민감도차이를 결정하는데 유전적 요인으로 작용하는지 알아보는데 중요한 기초자료를 제시해 주리라 생각되며 맞춤형 식단 등 영양유전학 분야에 응용될 수 있을 것이다.

Bitter Taste Receptor TAS2R38 Genetic Variation (rs10246939), Dietary Nutrient Intake, and Bio-Clinical Parameters in Koreans

  • Benish;Jeong-Hwa Choi
    • Clinical Nutrition Research
    • /
    • 제12권1호
    • /
    • pp.40-53
    • /
    • 2023
  • Differential bitterness perception associated with genetic polymorphism in the bitter taste receptor gene taste 2 receptor member 38 (TAS2R38) may influence an individual's food preferences, nutrition consumption, and eventually chronic nutrition-related disorders including cardiovascular disease. Therefore, the effect of genetic variations on nutritional intake and clinical markers needs to be elaborated for health and disease prevention. In this study, we conducted sex-stratified analysis to examine the association between genetic variant TAS2R38 rs10246939 A > G with daily nutritional intake, blood pressure, and lipid parameters in Korean adults (males = 1,311 and females = 2,191). We used the data from the Multi Rural Communities Cohort, Korean Genome and Epidemiology Study. Findings suggested that the genetic variant TAS2R38 rs10246939 was associated with dietary intake of micronutrients including calcium (adjusted p = 0.007), phosphorous (adjusted p = 0.016), potassium (adjusted p = 0.022), vitamin C (adjusted p = 0.009), and vitamin E (adjusted p = 0.005) in females. However, this genetic variant did not influence blood glucose, lipid profile parameters, and other blood pressure markers. These may suggest that this genetic variation is associated with nutritional intake, but its clinical effect was not found. More studies are needed to explore whether TAS2R38 genotype may be a potential predictive marker for the risk of metabolic diseases via modulation of dietary intake.

Investigation of PCR-RFLPs within Major Histocompatibility Complex B-G Genes Using Two Restriction Enzymes in Eight Breeds of Chinese Indigenous Chickens

  • Xu, R.F.;Li, K.;Chen, G.H.;Qiang, B.Y.Z.;Mo, D.L.;Fan, B.;Li, C.C.;Yu, M.;Zhu, M.J.;Xiong, T.A.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권7호
    • /
    • pp.942-948
    • /
    • 2005
  • New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a non-synonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variable-region-like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.