• Title/Summary/Keyword: TARIL

Search Result 2, Processing Time 0.013 seconds

Inhibition of liver fibrosis by sensitization of human hepatic stellate cells by combined treatment with galtanin and TARIL

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.138-143
    • /
    • 2023
  • Liver fibrosis is caused by metabolic problems such as cholestasis, genetic problems, or viral infections. Inhibiting hepatic stellate cell (HSC) activation or inducing selective apoptosis of activated HSCs is used as a treatment strategy for liver fibrosis. It has been reported that when HSCs are activated, their apoptosis sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is enhanced because the expression of death receptor 5 is elevated. Finding a natural compound that can enhance the apoptotic effect of TRAIL on HSCs is a necessary strategy for liver fibrosis treatment. It was confirmed here that mangosteen-derived gartanin increased the effect of TRAIL-induced apoptosis by increasing the expression of DR5 in a p38-dependent manner in the hepatic stellate cell line LX-2. Combined treatment with gartanin and TRAIL accelerated DNA cleavage through caspase-3 activation and enhanced antifibrotic effects in LX-2 cells.

Prolonged Gene Expression Following Erythrocyte-Mediated Delivery of TRAIL Plasmid DNA (혈구세포 수송체로 투여된 트레일 유전자의 혈중 발현 지속 효과)

  • Byun, Hyang-Min;Kwon, Kyoung-Ae;Shin, Jee-Young;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.261-265
    • /
    • 2003
  • Tumor necrosis facto-related apoptosis-inducing ligand (TRAIL) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in a number of tumor cells whereas cells from most of normal tissues are highly resistant to TRAIL-induced apoptosis. These observations have raised considerable interest in the use of TRAIL in tumor therapy. In this study we report the biodistribution fates and serum expression pattern of plasmid DNA encoding TRAIL (pTRAIL) delivered in erythrocyte ghosts (EG). pTRAIL was loaded into EG by electroportion in a hypotonic medium The mRNA expression of pTRAIL was prolonged following delivery in EG-encapsulated forms. EG containing pTRAIL showed significant levels of mRNA expression in the blood over 9 days. The organ expression patterns of pTRAIL delivered via EG, however, did not significantly differ from those of naked pTRAIL, indicating that the expression-enhancing effect of EG containing pTRAIL was localized to the blood. These results suggest that pTRAIL-loaded EG might be of potential use in the treatment of hematological diseases such as TRAIL-sensitive leukemia.