• Title/Summary/Keyword: T6 Heat Treatment

Search Result 291, Processing Time 0.024 seconds

Effects of Load Ratio on Fatigue Crack Growth in a TMT Treated Al-Zn-Mg Alloy (가공열처리한 Al-Zn-Mg 합금의 피로균열 성장거동에 미치는 하중비의 영향)

  • Byun, E.S.;Kim, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.19-26
    • /
    • 1989
  • Fundmental fatigue crack propagation tests with C-T type specimens were conducted at various load ratios (R) such as 0.1, 0.3 and 0.5 in T6 and Thermomechanically treated (TMT) conditions of 7039 Al alloy. Better mechanical properties from monotonic test as well as fatigue crack propagation were obtained by TMT process owing to uniform distribution of fine microstructures and non-existence of precipitation free zone (PFZ). Through the measurement of Kop and ${\Delta}K$ at various R the concept of effective stress intensity factor range ratio, U was reviewed to asses the load ratio effect on fatigue crack propagation. A relationship between U and variables such as ${\Delta}K$ and R was obtained empirically. This may enable us to predict ${\Delta}K_{eff}$ that is of critical importance for prediction of fatigue crack propagation rate.

  • PDF

ESTIMATION OF RESIDUAL STRESS IN CYLINDER HEAD

  • KIM B.;EGNER-WALTER A.;CHANG H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Residual stresses are introduced in aluminum cylinder head during quenching at the end of the T6 heat treatment process. Tensile residual stress resulted from quenching is detrimental to fatigue behavior of a cylinder head when it is overlapped with stresses of engine operation load. Quenching simulation has been performed to assess the distribution of residual stress in the cylinder head. Analysis revealed that in-homogeneous temperature distribution led to high tensile residual stress at the foot of the long intake port, where high stresses of engine operation load are expected. Measurements of residual stress have been followed and compared with the calculated results. Results successfully proved that high tensile residual stress, which was large enough to accelerate fatigue failure of the cylinder head, are formed during quenching process at the end of heat treatment at the same critical position. Effect of quenching parameters on the distribution of residual stress in cylinder head has been investigated by choosing different combination of heat treatment parameters. It was demonstrated that changes of quenching parameters led to more homogeneous temperature distribution during cooling and could reduce tensile residual stress at the critical region of the cylinder head used in this study.

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

Effect of heat treatment of core fabricated by Ni-Cr alloy on marginal and internal fit (열처리가 Ni-Cr 합금으로 제작된 하부구조물의 변연 및 내면 간격에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek;Jung, Jae-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.244-250
    • /
    • 2017
  • The most important aspect determining the completeness of aprosthesis is itsmarginal and internal fit. Alloysare processed using a softening/hardening heat treatment methodin order to improve their mechanical, physical properties and polishing properties. To examinehow the heat treatment method affects the marginal and internal fit of the Ni-Cr alloy core,thirty dental stone models of the abutment of the mandibular left molar were manufactured.The Ni-Cr alloy coreswere manufactured by the dipping method for the experiment and dividedinto three groups; A for no heat treatment, B for softening heat treatment and C for hardening heat treatment. The marginal and internal fitsof all of the groups were measured by the silicone replica technique. A statistical analysis was performed using one-way ANOVA(${\alpha}=0.05$) in order to examine whether there is a significant difference in the average values of the marginal and internal fits among the three groups and it was found that themarginal fits (1, 6) were significantly different (p<0.05), but the internal fits (2, 3, 4, 5) were not significantly different (p>0.05). These results show that Ni-Cr alloys should not be processed bythe heat treatmentmethod.However, they need to be confirmed in further clinical application studies.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Effect of Feeding Systems on Feed Intake, Eating Behavior, Growth, Reproductive Performance and Parasitic Infestation of Black Bengal Goat

  • Moniruzzaman, M.;Hashem, M.A.;Akhter, S.;Hossain, M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1453-1457
    • /
    • 2002
  • The experiment was conducted to find out the effect of 4 feeding systems on growth, feed intake, eating behavior, lactation performance, gestation period, post-partum heat period, conception rate and parasitic infestation of Black Bengal goat. Twenty four does of approximately 1 year of age were randomly selected for 4 treatment (feeding systems) groups having 6 replications in each. Treatments were stall feeding ($T_1$), tethering ($T_2$), restricted grazing ($T_3$) and grazing ($T_4$). $T_1$ group was housed continuously and adequate amounts of natural grass were supplied for ad libitum feeding. $T_2$ group was tethered for grazing natural grass from 8 a.m. to 4 p.m. being moved at one hour intervals. Goats of $T_3$ group were allowed grazing from 8 a.m. to 1 p.m. $T_4$ group was grazed from 8 a. m. to 4 p.m. Concentrate supplement was given at the rate of 150 g per day per goat for all of the treatment groups. Duration of experiment was 219 days. Daily live weight gain was significantly (p<0.05) higher in case of stall fed goats than that of others. DM intake also significantly (p<0.05) differed among the treatment groups and was 3.40 3.95, 3.76 and 4.05 per cent of their live weight for stall feeding, tethering, restricted grazing and grazing groups, respectively. Rate of rumination was significantly (p<0.05) higher in case of tethering group of goats than that of others. Birth weight of kids, milk yield, lactation period and post-partum heat period were significantly higher in case of stall fed goats than others. Tethering group showed significantly (p<0.05) higher litter size than others. Infestation rate of Fasciola was significantly (p<0.05) higher in the grazing group. In conclusion, it may be stated that among these feeding groups overall performance of stall fed goats was more satisfactory, and that the tethering group showed better performance than the others.

Tensile Properties of Plate Attached Open Cell Aluminium Foams (판이 부착된 개포형 발포 알루미늄의 인장특성)

  • Kang, Bok-Hyun;Bu, Sung-Duk;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.83-87
    • /
    • 2007
  • Aluminum plates of the same materials as the foam were attached by the casting process inserting the foam as a core to investigate the tensile property of open cell foams. Tensile properties of the open cell 6063 aluminum alloy foam of $10{\sim}30$ PPI were measured before and after heat treatment. Densities of test specimens were between 0.14 and $0.29g/cm^3$. Tensile strength of the 6063 aluminum foam after heat treatment showed little change. C values were in the range of $0.41{\sim}0.87$ for as cast foams and $0.11{\sim}0.27$ for T6 heat treated foams in the eq. of ${\sigma}^* _{pl}/{\sigma}_{ys}=C({\rho}/{\rho}_s)^{1.5}$, and increased with increase in the cell size.

Compressive Properties of Open Cell 6063 Aluminium Foam (개포형 6063 발포 알루미늄의 압축특성)

  • Bu, Sung-Duk;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2007
  • Compressive properties of the open cell 6063 aluminum alloy foams made by the plaster molding process were investigated before and after heat treatment. Loading process was controlled at a displacement rate of 2 mm/min. Compressive strength of 10 PPI foam was the largest of the same density foams. Increase in strength after heat treatment for the bulk material was remark able, however was not for the 6063 aluminum foam. C values were in the range of $0.39{\sim}0.53$ for as cast foams and $0.13{\sim}0.16$ for T6 heat treated foams in the equation of ${sigma}^*_{pl}/{\sigma}_{ys}=C({\rho}/{\rho}_{s})^{1.5}$ and increased with cell size.