• Title/Summary/Keyword: T2 weighted image

Search Result 248, Processing Time 0.028 seconds

Magnetic resonance imaging characteristic of lymph nodes: Comparison of T1 and T2 weighted image in normal rabbits (림프절의 자기공명영상의 특징: 가토에서 T1과 T2 강조영상의 비교)

  • Lee, Ki-chang;Choi, Min-cheol;Choi, Ho-Jung;Yoon, Jung-hee;Choi, Seong-hong;Moon, Woo-kyung;Chung, Jin-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.311-315
    • /
    • 2004
  • The detection of lymph node metastasis is an important step in tumor staging and is significant for therapy planning. It has been challenged to yield an appropriate image with diagnostic methods such as Magnetic Resonance (MR) and Computed Tomography (CT). Though CT has been used widely and accessed easily to show internal organs, it can hardly provide difference between lymph node and adjacent vessel or fat tissue. It has been well established that MR can reveal the subtle discrepancy within soft tissue. This study investigated the suitability of MR lymph node imaging without contrast enhancement by comparison of T1-weighted image (T1WI) and T2- weighted image (T2WI) in ten normal rabbits. According to the pulse sequence optimized from preliminary study, T1-weighted spin-echo (repetition time/echo time=400/12 ms) and T-2 weighted fast spin-echo (repetition time/echo time=3500/84 ms) images covering the hind limbs and pelvic region were acquired at 1.5 T. Two radiologists scrupulously evaluated the MR images in consensus. And signal intensity of lymph nodes was compared with that of adjacent fat. Statistical analysis showed that T1-weighted coronal image visualized the lymph nodes (iliac, superficial inguinal and popliteal lymph nodes) quickly and consistently rather than T2-weighted one. Conclusively, T1WI for evaluation of lymph nodes is moderately better than T2WI and appears to have potential for quick and sufficient mapping of the lymph nodes. In addition, this normal MR image of lymph nodes could be applied to further study for the evaluation of lymphatic system in abscess and tumor bearing animal model.

Evaluation of the Image Blurring in the Fast Spin Echo Technique ccording to Variation of the ETL (고속스핀에코기법을 이용한 MRI검사에서 ETL 변화에 따른 영상 blurring의 평가)

  • Kwon, Soon-Yong;Lim, Woo-Taek;Kang, Chung-Hawn;Kim, Kyeong-Soo;Kim, Soon-Bae;Kim, Hyun-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2013
  • The purpose of this study is to evaluate image blurring according to variation of the ETL and propose the clinically appropriate ETL range. SIEMENS MAGNETOM Skyra 3.0T and 20 channel head coil were used for the study. MRI phantom was kept the lines horizontally to three direction(X,Y,Z) of the coil and T1, T2 weighted images that used the fast spin echo technique acquired. The ETL with increase of 10 was applied from 10 to 80. In addition, the ETL with increase of 1 was applied in the interval statistically significant differences occurred. And T1, T2 weighted images that used the conventional spin echo technique acquired to compare image blurring of the images that used the fast spin echo technique. The slope of lattice in the images was measured using Image J 1.47v program to evaluate image blurring. And image blurring was determined by the degree of the slope. The statistical significance of both techniques was evaluated by the Kruskal-Wallis test of the SPSS 17.0v. And the correlation of the ETL and image blurring was evaluated quantitatively by regression analysis. The slope of the T1, T2 weighted images that used fast spin echo technique decreased as contrasted with conventional spin echo technique. In the result of the Kruskal-Wallis test, the T1, T2 weighted images that used fast spin echo technique made a significant difference with conventional spin echo technique. Particularly, in the Tomhane' T2 test, the T1, T2 weighted images made a significant difference from ETL 22 and 31 respectively. In the result of the regression analysis, the R-squared of the T1, T2 weighted images are 0.762 and 0.793. It is difficult to apply the long ETL in the T1 weighted image caused by the short TR and multi-slices study. Therefore, clinical impact according to variation of the ETL is very slight in the T1 weighted images. But the application of the proper ETL is demanded in T2 weighted images using the fast spin echo technique in order to prevent image blurring.

  • PDF

The study of utility about magnetic resonance elastography for measurements of liver stiffness : the comparisons of ADC value & T2 weighted image (간 경화도 측정을 위한 3.0T 자기공명 탄성계수 영상의 유용성에 대한 고찰 : 확산계수 영상 및 T2 강조 영상과의 비교)

  • Kim, Sang-Woo;Kang, Chung-Hwan;Kim, Sung-Ho;Kim, Kyung-Soo;Kim, Soon-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • The purpose of this study is to evaluate the mutual relations by measuring SNR from T2 weighted image and ADC values on the basis of the stiffness values from liver tissues. This study was conducted that total 37 people(23 of males and 11 of females) were taken the liver MRI examination and average age was $54.5{\pm}12.7$ years old. The equipment was MAGNETOM Skyra 3.0T (SIEMENS, Erlangen, Germany) and 32 channel body-array coil. The examination were conducted with HASTE T2 weighted image by axial plane, Spin-echo EPI (echo planner image) DWI (b-value = 800) and Magnetic resonance elastography. The ROIs (region of interest: 200-300 $mm^2$) were established on the basis of the first axial stiffness image corresponded 95% confidence interval from axial stiffness image and then were measured values. After drawing the grid lines, signals were measured SNR from T2 weighted image and ADC values on the same locations that were analysed other 3 planes respectively. The results were showed correlation (0.057) that were increased to SNR from T2 weighted image by increasing stiffness value that no significant difference statistically p = 0.003. Other results were showed correlations (-0.301) that were decreased to ADC values by increasing stiffness values that no significant difference statistically p = 0.088. In the 3.0T equipment, the results may be error in much the same fashion as the 1.5T from ADC values by evaluation of fibrosis stage. However, Magnetic resonance elastography would be useful method that is used to diagnose exactly liver fibrosis stages in the 3.0T.

  • PDF

Studies on the Ability to Detect Lesions According to the Changes in the MR Diffusion Weighted Images

  • Kim, Chang-Bok;Cho, Jae-Hwan;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2012
  • This study evaluated the ability of Diffusion-Weight Image (DWI), which is one of pulse sequences used in MRI based on the T2 weighted images, to detect samples placed within phantoms according to their size. Two identically sized phantoms, which could be inserted into the breast coil bilaterally, were prepared. Five samples with different sizes were placed in the phantoms, and the T2 weighted images and DWI were obtained. The Breast 2 channel coil of SIEMENS MAGNETOM Avanto 1.5 Tesla equipment was used for the experiments. 2D T2 weighted images were obtained using the following parameters: TR/TE = 6700/74 msec, Thickness/gap = 5/1 mm, Inversion Time (TI) = 130 ms, and matrix = $224{\times}448$. The parameters of DWI were that TR/TE = 8100/90 msec, Thickness/gap = 5/1 mm, matrix = $128{\times}128$, Inversion Time = 185 ms, and b-value = 0, 100, 300, 600, 1000 s/mm. The ratio of the sample volume on DWI compared to the T2 weighted images, which show excellent ability to detect lesions on MR images, was presented as the mean b-value. The measured b-value of the samples was obtained: 0.5${\times}$0.5 cm=0.33/0.34 square ${\times}$ cm (103%), 1${\times}$1 cm=1.28/1.25 square ${\times}$ cm (102.4%), 1.5${\times}$1.5 cm = 2.28/2.67 square ${\times}$ cm (85.39%), 2${\times}$2 cm=3.56/4.08 square ${\times}$ cm (87.25%), and 2.5${\times}$2.5 cm=7.53/8.77 square ${\times}$ cm (85.86%). In conclusion, the detection ability by the size of a sample was measured to be over 85% compared to T2 weighted image, but the detection ability of DWI was relatively lower than that of T2 weighted image.

Prostate MR and Pathology Image Fusion through Image Correction and Multi-stage Registration (영상보정 및 다단계 정합을 통한 전립선 MR 영상과 병리 영상간 융합)

  • Jung, Ju-Lip;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.700-704
    • /
    • 2009
  • In this paper, we propose a method for combining MR image with histopathology image of the prostate using image correction and multi-stage registration. Our method consists of four steps. First, the intensity of prostate bleeding area on T2-weighted MR image is substituted for that on T1-weighted MR image. And two or four tissue sections of the prostate in histopathology image are combined to produce a single prostate image by manual stitching. Second, rigid registration is performed to find the affine transformations that to optimize mutual information between MR and histopathology images. Third, the result of affine registration is deformed by the TPS warping. Finally, aligned images are visualized by the intensity intermixing. Experimental results show that the prostate tumor lesion can be properly located and clearly visualized within MR images for tissue characterization comparison and that the registration error between T2-weighted MR and histopathology image was 0.0815mm.

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

Dependency of Generator Performance on T1 and T2 weights of the Input MR Images in developing a CycleGan based CT image generator from MR images (CycleGan 딥러닝기반 인공CT영상 생성성능에 대한 입력 MR영상의 T1 및 T2 가중방식의 영향)

  • Samuel Lee;Jonghun Jeong;Jinyoung Kim;Yeon Soo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2024
  • Even though MR can reveal excellent soft-tissue contrast and functional information, CT is also required for electron density information for accurate dose calculation in Radiotherapy. For the fusion of MRI and CT images in RT treatment planning workflow, patients are normally scanned on both MRI and CT imaging modalities. Recently deep-learning-based generations of CT images from MR images became possible owing to machine learning technology. This eliminated CT scanning work. This study implemented a CycleGan deep-learning-based CT image generation from MR images. Three CT generators whose learning is based on T1- , T2- , or T1-&T2-weighted MR images were created, respectively. We found that the T1-weighted MR image-based generator can generate better than other CT generators when T1-weighted MR images are input. In contrast, a T2-weighted MR image-based generator can generate better than other CT generators do when T2-weighted MR images are input. The results say that the CT generator from MR images is just outside the practical clinics and the specific weight MR image-based machine-learning generator can generate better CT images than other sequence MR image-based generators do.

A Study on Comparative Analysis of Diffusion Weighted Image Examination before and after Contrast Injection (조영제 사용 전 후 확산강조영상 검사의 비교 분석에 대한 연구)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • The purpose of this study would evaluate if having clinical effects on diffusion image with quantitative analysis through ADC values of brain's normal tissue and lesions before and after contrast injections using a 3.0T. From November in 2007 until December in 2008, a total of 32 patient was performed on 3.0T(Signa Excite, GE Medical System, USA) with the normal or lesions in the patient who requests diffusion weighted image with 8channel head coil. The pulse sequence was used with spin echo EPI(TR: 10000msec, TE: 72.2 msec, Matrix: 128*128, FOV: 240 mm, NEX: 1, diffusion direction: 3, b-value: 1000). Measurement results of ADC values on lesions, CSF, white matter, gray matter, lesions after contrast injection were measured less 75% than before contrast injection, infarction: 100%, CSF: 78%(high), white matter: 71.4%(low), gray matter: 50%(high, low). The results of paired t-test on the deference of ADC values which statically is significant in three(lesions, CSF, white matter)regions except for white matter(p<0.05). Quantitative analysis of lesions, CSF, white matter, gray matter have difference on all regions. ADC values were low in lesions and white matter, normal CSF after contrast injection commonly is high than before contrast injection, ADC values which white matter were high and low (50:50) after contrast injection. 3.0T diffusion weighted image clinically supposed that performing DWI examination after contrast injection was not desirable because of having effects on brain tissue.

  • PDF

Cerebellar Pilocytic Astrocytomas with Spontaneous Intratumoral Hemorrhage in Adult

  • Kim, Min-Su;Kim, Sang-Woo;Chang, Chul-Hoon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.6
    • /
    • pp.363-366
    • /
    • 2011
  • Cerebellar pilocytic astrocytomas (PAs) are benign gliomas predominantly found in the pediatric population. Intracranial hemorrhages are extremely rare in initial presentations of cerebellar PAs. There are no reports in the medical literature of adult cerebellar PA cases presenting with intratumoral hemorrhage. We report 2 cases of adult cerebellar pilocytic astrocytomas with intratumoral hemorrhage. The first case is a 37-year-old woman presenting with severe headache, nausea, and vomitting. Computed tomography demonstrated an acute hemorrhage adjacent to the right cerebellar hemisphere and hydrocephalus. Magnetic resonance imaging (MRI) revealed a cerebellar vermian tumor with the hemorrhage as a mixed isoin-tense area in the T2-weighted image, and as a mixed hyperintense area in the contrast-enhanced T1-weighted image. The second case is a 53-year-old man presenting with headache for 3 weeks. MRI revealed a cerebellar hemispheric tumor with the hemorrhage as a mixed hyperintense area. It had a cystic mass with a heterogeneous enhanced mural nodule in the gadolinium-enhanced T1-weighted image and a fluid-fluid level within the cyst in the T2-weighted image. Both of them underwent radical resections of their respective lesions. Histological examination of the specimens revealed typical astrocytoma, including a hemorrhagic portion. Both patients recovered postoperatively and continue to do well at present. The medical literature on hemorrhagic cerebellar PAs is also reviewed.

Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence (마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.