• Title/Summary/Keyword: T-welded joint

Search Result 98, Processing Time 0.02 seconds

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Microstructural Characteristics of T-bar Welding Zone for Shipbuilding and Offshore Plants (조선해양플랜트용 T-bar 용접부의 미세조직학적 특성에 관한 연구)

  • Hwang, Y.J.;Choi, Y.S.;Jang, J.H.;Lee, S.I.;Gong, K.Y.;Lee, DG.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.296-300
    • /
    • 2018
  • T-type and H-type section steels were generally used in shipbuilding and offshore plants and were produced by welding technology. These section steels were produced by handwork, and the supplying amounts can't satisfy the demand amounts of the fabrication companies. In case of fillet welding, there are some gaps in weld-joint region due to no groove preparation processing and it can occur crack initiation in the welded region. It is important to evaluate the microstructural and mechanical properties of welded zone to solve these problems. To satisfy the demand amounts of T-bar parts, automatic welding technology was introduced and several conditions as a function of welding speeds were carried out to improve the manufacturing speed. Heat-affected zone may be affected by variation of heat input and cooling rate through automatic welding speed and welding speed is necessary to be optimized. In this study, fusion zone and heat-affected zone were investigated by microstructural and mechanical analysis and were evaluated whether the welded parts were sound or not.

Fatigue Crack Propagation Life Assessment of T-joint Fillet Weldment Considering Residual Stress under Random Loading (변동하중하의 잔류응력을 고려한 십자형 용접부의 잔존 수명 예측에 관한 연구)

  • Kim, Sung-Hoon;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Chang-Hyuk;You, Won-Hyo;Yoo, Mi-Ji
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.46-55
    • /
    • 2011
  • This paper deals with the crack propagation life assessment of T-joint welded structure where typical fatigue cracks have been frequently initiated when the marine vessels experience the storm load. Welding residual stresses are calculated to investigate its effects on the fatigue life. Thereafter the residual stress distribution was applied to the AFGROW life prediction program, which incorporated the loading, the welding residual stress, and the geometric shape of the structure. The fatigue tests of the T-joint welded specimen under storm loading show the beach mark clearly generated on the fractured section of the weldment. The crack propagation life estimated based on the beach mark is compared with that of AFGROW to validate the life prediction. Based on the results, the evaluation method of the remaining fatigue life for T-joint fillet weldment of marine vessel's cargo hold with random load or storm load was established.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

A study on the reidual stress and strain deu to welding of L and T shapes (L형 및 T형 잠류응력과 변형율에 관한 연구)

  • ;;Kim, Won Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.199-206
    • /
    • 1981
  • This paper presents a method of calculation of the stresses, the strains and the deflections due to welding in L shape and in T shape. Using step by step method of plasticity and establishing the equilibrium conditions in section, we calculated thermal stresses and strains during welding and in the final step of calculation we got the residual stresses, strains and the deflections due to welding. Also we measured the stresses and the strains with hole-drilling method and compared the results with the method of calculation presented in this paper. Because of its symmetry of section, the deflection due to welding in T shape is generally much less than that in L shape. The residual stresses are tensile in welded joints and HAZ, and compressive in base metal as butt welding of plates, but the compressive stresses in base metal decrease repidly as the points are away from welded joint except horizontal plates of T shape. The theoretical method of calculaiton presented in this paper coincides faily well with the experiment.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

Comprehensive Residual Stress Distributions in a Range of Plate and Pipe Components

  • Lee Hyeong-Yeon;Kim Jong-Bum;Lee Jae-Han;Nikbin Kamran M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.335-344
    • /
    • 2006
  • A comprehensive review of through thickness transverse residual stress distributions in a range of as-welded and mechanically bent components made up of a range of steels has been carried out, and simplified generic transverse residual stress profiles for a plate and pipe components have been proposed. The geometries consisted of welded pipe butt joints, T-plate joints, tubular T-joints, tubular Y-joints and a pipe on plate joints as well as cold bent tubes and pipes. The collected data covered a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. Measured residual stress data, normalised with respect to the parent material yield stress, has shown a good linear correlation versus the normalised depth of the region containing the residual stress resulting from the welding or cold-bending process. The proposed simplified generic residual stress profiles based on the mean statistical linear fit of all the data provides a reasonably conservative prediction of the stress intensity factors. Whereas the profiles for the assessment procedures are fixed and case specific, the simple bilinear profiles for the residual stresses obtained by shifting the mean and bending stress from the mean regression line have been proposed and validated.

Comparative behaviour of stiffened and unstiffened welded tubular joints of offshore platforms

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.321-331
    • /
    • 2003
  • The paper presents the results of an experimental investigation conducted on welded tubular joints, that are employed in offshore platforms, to study the behaviour and strength of these joints under axial brace compression loading. The geometrical configuration of the joints tested were T and Y. The nominal diameter of the chord and brace members of the joint were 324 and 219 mm respectively. The chord thickness was 12 mm and the brace 8 mm. The tested joints are approximately quarter size when compared to the largest joints in the platforms built in a shallow water depth of 80 m in the Bombay High field. Some of the joints were actually fabricated by a leading offshore agency which firm is directly involved in the fabrication of prototype structures. Strength of the internally ring-stiffened joints was found to be almost twice that of the unstiffened joints of the same configuration and dimensions. Bending of the chord as a whole was observed to be the predominant mode of deformation of the internally ring-stiffened joints in contrast to ovaling and punching shear of the unstiffened joints. It was observed in this investigation that unstiffened joint was stiffer in ovaling mode than in bending and that midspan deflection of unstiffened joint was insignificant when compared to that of the internally ring stiffened joint. The measured midspan deflection of the unstiffened joint in this investigation and its relation with the applied axial load compares very well with that predicted for the brace axial displacement by energy method published in the literature. A comparison of the measured deflection and ovaling of the unstiffened joint was made with that published by the author elsewhere in which numerical prediction of both quantities have been made using ANSYS software package. The agreement was found to be quite good.

Experimental Comparison of Weld Zone Properties for $2mm^{t}$ Aluminum Alloy Sheets Friction-Stir-Welded using Milling Machine. (마찰용접 된 박판재의 용접부 특성에 대한 실험 비교)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1747-1751
    • /
    • 2003
  • The paper shows properties such as vickers hardness, yielding and ultimate stresses for the weld zone of the butt and the lap jointed specimens, and compare maximum loads, stress-strain curves, deformation appearance after guided bending test and fracture appearance for butt and lap jointed specimens. The research in this experiment also shows the weldability of the butt joint specimen is better than that of the lap joint specimen using FSW with $2mm^{t}$ aluminum alloy sheet in milling machine.

  • PDF