• Title/Summary/Keyword: T-peel 강도

Search Result 33, Processing Time 0.017 seconds

The Anti-adipogenic and Lipolytic Effect of Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf Extract in 3T3-L1 Cells (3T3-L1 지방세포에서 진귤 잎 유래 polymethoxyflavones 다량 함유 분획물(PRF)의 항지방생성 및 지방분해 효과)

  • Jin, Yeong Jun;Jang, Mi Gyeong;Kim, Jae-Won;Kang, Minyeong;Ko, Hee Chul;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.542-549
    • /
    • 2022
  • Polymethoxyflavones (PMFs) are flavonoids mainly found in citrus fruits and have been reported to exhibit a wide range of bioactivities, including anti-obesity, anti-cancer, and anti-inflammatory actions. To utilize PMFs as functional materials, it is necessary to develop a simple method of obtaining PMFs from citrus tissues containing a large amount of PMFs. It has been reported that Jinkyool (C. sunki Hort ex. Tanaka) peel contained a large amount of PMFs, but there are no studies on PMFs isolated from its leaves. In this study, we established a simple procedure for obtaining the PMF-rich fraction (PRF) from the leaves of Jinkyool and investigated the effects of PRF on lipid metabolism in 3T3-L1 cells. PRF inhibited lipogenesis during the differentiation of 3T3-L1 preadipocytes. It decreased the expression of peroxisome proliferator-activated receptor gamma (PPAR𝛾) and CCAAT/enhancer binding protein alpha (CEBP𝛼), FAS, and adipocyte fatty-acid-binding protein 2 (aP2). In mature 3T3-L1 adipocytes, PRF increases the phosphorylation of protein kinase A (PKA)/hormone-sensitive lipase (HSL), which are key factors involved in lipolysis. Moreover, it increases the phosphorylation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) involved in fatty acid oxidation. These results suggest that PRF from Jinkyool leaves can be used as an anti-obesity agent with the action of inhibiting lipogenesis and promoting lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.

Leather's Environment-friendly Adhesion Surface Treatment of shoe's material by Plasma (플라즈마를 이용한 신발소재의 환경 친화적인 접착 표면 처리(I))

  • Ha, Soon-Hee;Jang, U-Jin;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.6-12
    • /
    • 2005
  • The plasma generally, ionized gas state, is the 4th material state composed the universe. Generating the plasma artificially has been studied by spending energy and it has a lot of applications in human's life. There are several merits to modify the surface of polymer using plasma. Above all, plasma maintains the property of polymer because of it changes the property of surface only. Also, it doesn't use a organic solvent and it is the environment friendship because of there are no waste under processing. Furthemore, in case of high-pressure plasma, it is possible that automated-processing continuously. In this study, we tried the reforming of surface to rise the adhesive strength between the material of polymer, experimented the rising of adhesive strength through a experiment of peel strength by virtue of processing time and using gas, confirmed the change of polymer's surface through measuring the surface contact angle analyzer and scanning electron microscopy (SEM).

  • PDF