• Title/Summary/Keyword: T-joint welding

Search Result 126, Processing Time 0.019 seconds

Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy (마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질)

  • Lee, Won-Bae;Biallas, gehard;Schmuecker, Martin;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.

Study on Friction Welding of Copper to Aluminium for Developing Electrical Sleeve (전력용 슬리브 개발을 위한 동과 알루미늄의 마찰용접에 관한 연구)

  • 오세규;최진호;장지훈;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.100-106
    • /
    • 1993
  • A study on optimizing the friction welding of copper(C1100) to aluminium(A1050) for developing the electrical sleeve was experimentally carried out and also on real-time nondestructive evaluation of the friction weld quality (strength) was accomplished by acoustic emission technique. The results obtained are summarized as the following ; 1) The heating upset $U_1$(mm) or total upset U(mm) tends to increase according to the increase of heating time $t_1$(sec). The relations between $U_1$ and $t_1$ or U and $t_1$are computed as follows when n=2000rpm, $P_1$=4, $P_2$=8kgf/$mm^2$, and $t_2$=6sec. U=1.6$e^{0.39t_1}$ $U_1$=3.65$e^{0.25t_1}$. 2) It was notified that the proper welding conditions by considering on both strength with more than 100% joint effieciency and toughness are heating time of 1.5-2.25 sec under n=200rpm, $P_1$=4, $P_2$=8kgf/$mm^2$, $t_2$=6sec. 3) It was confirmed that both AE total counts(N, counts) and the weld tensile strength (${\sigma}$, kgf/$mm^2$) of the welded joints increase as the increase of heating time, respectively, the relations between N and $t_1$, ${\sigma}$ and $t_1$ are computed from data points by regression analysis using the least square method as follows in case of the above proper condition ; N=50108+23917(ln $t_1$)${\sigma}$$=11.85+2.06(ln $t_1$). 4) Both empirical and calcularated equations of relationship between .sigma. and N are very coincident with a high reliability, as the following in case of the above proper welding condition ; Calculated : ${\sigma}$=0.00008N+7.5 Empirical :${\sigma}$= $8.17e^{0.0000072N}$. 5) It was confirmed that the real-time nondestructive weld strength evaluation for friction welding of copper(C1100) to aluminium(A1050) could be possible by acoustic emission technique.

  • PDF

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly (차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향)

  • Lee, Hye-rim;Lee, So-jeong;Lim, Chang-young;Seo, Jong-dock;Kim, Mok-soon;Kim, Jun-ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field (잔류응력장을 전파하는 용접 토우부 균열의 전파해석)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method (레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상)

  • Kim, Byung-Hun;Kang, Nam-Hyun;Park, Yong-Ho;Ahn, Young-Nam;Kim, Cheol-Hee;Kim, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

A Study of the High Reliability in Plastic BGA Solder Joints (플라스틱 BGA 솔더접합부의 고신뢰성에 관한 연구)

  • Kim, Kyung-Seob;Shin, Young-Eui;Lee, Hyuk
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1999
  • The increase in high speed, multi-function and high I/O pin semiconductor devices highly demands high pin count, very thin, and high density packages. BGA is one of the solutions, but the package has demerits in package reliability, surface mounting problems due to the PCB warpage and solder joint crack related with TCE mismatch between the materials. On this study to verify the thermal fatigue lifetime of the solder joint FEM and experiments were performed after surface mounting BGA with different solder composition and reliability conditions. FEM showed optimum composition of Ag3.2-Sn96.5 and under the composition minimum creep deformation of the solder joint was calculated, and the thermal fatigue lifetime was improved. In view of temperature cycle condition, the conditions of $-65^{\circ}C$to $150^{\circ}C$ showed minimum lifetime and t was 1/3 of $0^{\circ}C$ to $125^{\circ}C$ condition. Test board was prepared and solder joint crack was verified. Until 1000cycle on soder joint crack was observed.

  • PDF

No Root Cap Horizontal Butt-welding with MAG Process

  • Jang, T.W.;Cho, S.H.;Park, C.G.;Lee, J.W.;Woo, W.C.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • It has been used many kinds of horizontal butt-welding methods at block-to-block erection stage in shipbuilding companies. For examples, some companies use conventional FCAW process with one side or both sides groove joint welding, others use carriage with torch holder type mechanized welding method. Although lots of efforts were done until now, some problems in quality and productivity still remain in ship's hull welding. In this study, we have attempted to raise productivity and quality on horizontal position of welding with following 3 items. 1) Prepare groove condition with no root gap for making easy fit-up work. 2) Develop improved MAG (100% $CO_2$ gas shielding) welding process with solid wire for making sound root bead from one side. 3) Develop and apply quite new automatic welding carriage. The stability of new welding process was confirmed by conducting mechanical tests of weldments to verify the soundness of weldments.

  • PDF