• 제목/요약/키워드: T-joint welding

검색결과 126건 처리시간 0.018초

외력을 고려한 양면 T-용접이음부의 음력해석 (Stress Analysis of Double T-Welded Joints Considering External Forces)

  • 김성환;방한서;방희선;송관형
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.215-220
    • /
    • 2001
  • In the T-joint welding, the complete penetration joint which is obtained by groove welding with edge preparation is generally required thor the safety and reliability of structures but this way have the some defects such as increase of working time, consumed welding electrode quantity and large welding deformation. If there is no probrem, in the strength, T-joint welding without edge preparation will be profitably understood in the economical and welding deformation side. In this paper, we performed the finite element analysis to understand the characteristics of welding residual stresses on two models, complete penetration joint have the edge preparation and incomplete penetration joint without edge preparation, respectively. Especially, we observed the relation between welding residual stress distributed on the notch of gap in the root and external force in the incomplete penetration joint without edge preparation.

  • PDF

T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구 (A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint)

  • 강성원;이태훈;전재목;김충희
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

Sm 490A강으로 제작된 T형 편면용접이음재의 굽힘피로강동에 관한 연구 (A Study on Bending Fatigue Strength of One Side Fillet Welded T-Joint by SM 490A steel)

  • 엄동석;강성원;이태훈;이해우;조수형
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.134-141
    • /
    • 1998
  • In this study, a fillet size for bending fatigue strength of one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by bending fatigue test with or without edge preparation and burn through, with variation of joint shape. As a result, the following conclusions were obtained. (1) In one side fillet welded T-joint, the larger the leg length, the greater the bending fatigue strength. The increase in bending fatigue strength. (2) One side filet welded T-joint with edge preparation showed higher bending fatigue strength than that with twofold-large leg length and without edge preparation. (3) In one side fillet welded T-joint without edge preparation, both manual welding and automatic welding were carried out with same condition. In this case, automatic welding shoed deeper penetration and more increased horizontal leg length than manual welding, so that automatic welding offers grater bending fatigue strength. (4) For one side fillet welded T-joint without edge preparation, the ratio(h/t) of the leg length (h) and the main plate thickness (t) in which toe crack can occur was 1.2 over. (5) In one side fillet welded T-joint with edge preparation, the burn through led to reduced bending fatigue strength. However, this bending fatigue strength was higher than that of one side fillet welded T-joint without edge preparation and with a larger leg length.

  • PDF

루트부 갭이 있는 양면 필릿용접 이음부의 용접잔류응력 분포 (Distribution of Welding Residual Stresses in T-joint Weld with Root Gap)

  • 방한서;김성환;김영표;이창우
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.81-88
    • /
    • 2002
  • 용접구조물의 루트부는 외력에 의한 응력 집중에 의해 파손되기 쉽다. 따라서 구조물의 안전성 및 신뢰성 측면에서 홈 가공한 그루브 용접에 의한 완전용입 용접이 일반적으로 요구되어진다. 하지만 필릿 T-이음부 용접은 루트부의 갭과 같은 불완전 용입부를 만들어내기 쉬움에도 불구하고 홈 가공 시간 및 용접봉 소모량을 줄이기 위해 이러한 필릿용접이 자주 행해지고 있다. 따라서, 본 연구에서는 필릿 용접구조물의 플래이트(또는 플랜지)와 웨브 부분에 발생하는 용접잔류 응력과, 특히 불완전 용입에 의한 루트부 갭을 갖는 양면 T-이음부의 노치부분에 발생하는 잔류응력 분포를 해석하고자 하였다. 해석을 위해서 서브머지드 아-크 용접에 의한 단층 및 다층패스용접 모델을 선정하였으며, 열전도 및 열탄소성 이론을 고려한 유한요소 프로그램을 사용하였다.

Friction Stir Welding Tool Geometries Affecting Tensile Strength of AA6063-T1 Aluminum Alloy Butt Joint

  • Kimapong, Kittipong;Kaewwichit, Jesada;Roybang, Waraporn;Poonnayom, Pramote;Chantasri, Sakchai
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.145-153
    • /
    • 2015
  • Friction Stir Welding (FSW) is a solid state welding that could successfully weld the difficult-to-weldmaterials such as an aluminum alloy. In this welding process, the stirrer of the welding tool is one of the important factors for producing the perfect sound joint that indicates the higher joint strength. So, this report aims to apply the friction stir welding using various stirrer geometries to weld the AA6063-T1 aluminum alloy butt joint, investigates the mechanical properties of the joint and then compares the mechanical properties with the microstructure of the joint. An experiment was started by applying the friction stir welding process to weld a 6.3 mm thickness of AA6063-T1 aluminum alloy butt joint. A study of the stirrer geometries effect such as a cylindrical geometry, a cone geometry, a left screw geometry and a right screw geometry at a rotational speed of 2000 rpm and a welding speed of 50-200 mm/min was performed. The mechanical properties such as a tensile strength and a hardness of the joint were also investigated and compared with the microstructure of the joint. The results are as follows. A variation of FSW Stirrer shape directly affected the quality AA6063-T1 aluminum alloy butt joint. A cylindrical stirrer shape and a cone stirrer shape produced the void defect at the bottom part of the weld metal and initiated the failure of the joint when the joint was subjected to the load during the tensile test. Left and right screw stirrer shapes gave the sound joint with no void defect in the weld metal and affected to increase the joint strength that was higher than that of the aluminum base metal.

자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구 (A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile)

  • 오용석;유영태;신호준
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술 (The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41)

  • 이가람;황찬연;양윤석;박은경;유영태
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.

T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구 (A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint)

  • 방한서;김종명
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Nd:YAG 레이저를 이용한 자동차 배터리용 SS41 다층박판 이종두께 T형상 용접 특성 (T-joint Welding Characteristics of Multi-thin Plate Dissimilar Thickness of SS41 of Automobile Battery by using Nd:YAG Laser)

  • 양윤석;황찬연;유영태
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1078-1088
    • /
    • 2012
  • In this paper, we present research experimental results about the different thickness T-joint welding of the high power continuous wave(CW) Nd:YAG laser for the secondary battery of a vehicle. Although the conventional method used for the secondary battery is a argon TIG welding, we utilize a laser welding to improve Tungsten Inert Gas(TIG) welding's weakness. The laser, which has a couple of advantage such as aspect ratio, low Heat Affected Zone(HAZ), good welding quality and fast productivity utilized in this work is a CW Nd:YAG laser. In order to observe laser welding sections, we used a optical microscope. Through the analysis of the metallographic, hardness, aspect ratio, and heat input, we obtained the desired data in condition of 1800 W laser beam power and 1.8 m/min and 2.0 m/min laser beam travel speeds. In order to compare electric resistances of the argon TIG welding and laser welding, we made an actual battery and the electric resistance of the laser welding is reduced by 40~45% comparing with the argon TIG welding.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.