• 제목/요약/키워드: T-complex protein 10A homolog 2 (TCP10L)

검색결과 2건 처리시간 0.016초

TCP10L synergizes with MAD1 in transcriptional suppression and cell cycle arrest through mutual interaction

  • Shen, Suqin;Zuo, Jie;Feng, Huan;Bai, Meirong;Wang, Chenji;Wei, Youheng;Li, Yanhong;Le, Yichen;Wu, Jiaxue;Wu, Yanhua;Yu, Long
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.325-330
    • /
    • 2016
  • T-complex protein 10A homolog 2 (TCP10L) was previously demonstrated to be a potential tumor suppressor in human hepatocellular carcinoma (HCC). However, little is known about the molecular mechanism. MAX dimerization protein 1 (MAD1) is a key transcription suppressor that is involved in regulating cell cycle progression and Myc-mediated cell transformation. In this study, we identified MAD1 as a novel TCP10L-interacting protein. The interaction depends on the leucine zipper domain of both TCP10L and MAD1. TCP10L, but not the interaction-deficient TCP10L mutant, synergizes with MAD1 in transcriptional repression, cell cycle G1 arrest and cell growth suppression. Mechanistic exploration further revealed that TCP10L is able to stabilize intracellular MAD1 protein level. Consistently, the MAD1-interaction-deficient TCP10L mutant exerts no effect on stabilizing the MAD1 protein. Taken together, our results strongly indicate that TCP10L stabilizes MAD1 protein level through direct interaction, and they cooperatively regulate cell cycle progression.

TCP10L negatively regulates alpha-fetoprotein expression in hepatocellular carcinoma

  • Shen, Suqin;Feng, Huan;Liu, Longjiang;Su, Wei;Yu, Long;Wu, Jiaxue
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.431-436
    • /
    • 2020
  • Alpha-fetoprotein (AFP) is one of the most commonly used and reliable biomarkers for Hepatocellular carcinoma(HCC). However, the underlying mechanism of AFP expression in HCC is poorly understood. In this study, we found that TCP10L, a gene specifically expressed in the liver, is down-regulated in HCC and that its expression inversely correlates with AFP expression. Moreover, overexpression of TCP10L suppresses AFP expression whereas knockdown of TCP10L increases AFP expression, suggesting that TCP10L might be a negative regulator of AFP. We found that TCP10L is associated with the AFP promoter and inhibits AFP promoter-driven transcriptional activity. Taken together, these results indicate that TCP10L negatively regulates AFP expression in HCC and that it could be a potential prognostic marker and therapeutic target for HCC.