• Title/Summary/Keyword: T-P removal rate constant

Search Result 13, Processing Time 0.024 seconds

A Study on the Advanced Treatment of Wastewater by Plants (식물을 이용한 오수의 고도처리에 관한 연구)

  • 이용두;김현희
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • In recent years increasing production and disposal of wastewater have caused an accelerated eutrophication of receiving waters. Therefore, in order to alleviate the detrimental impact of wastewater discharge, there is an increasing demand for removing the main nutrients, nitrogen and phosphorus, as well as the organic content of the waste water prior to disposal. This is effectively achieved by extended conventional treatment technology. However, the working expenses and energy requirements of such advanced treatment systems are rather high. So in a sparsely populated rural community is required development of wastewater treatment system combined with the regional characteristics. In this study, the systems are planted with Reeds and Amaryllis In A.C and estimated purification potential of system. The results obtained are as follows. BOD removal rate is 20% in the early stage, the last removal rate is 35% in A.C process and is 65% in Amaryllis+A.C process and is 50% in Reed+A.C process. T-N removal rate by Amaryllis is average 2.6g/$m^3$ㆍd, T-N removal rate by Reed is average 1.76g/$m^3$ㆍd. T-P removal rate by Amaryllis is average 0.27g/$m^3$ㆍd, T-P removal rate by Reed is average 0.25g/$m^3$ㆍd. BOD removal rate constant with retention time is 1.4494(1/d), T-N removal rate constant is 0.5428(1/d), T-P removal rate constant is 0.5287(1/d).

  • PDF

The Effects of Changing of Hydraulic Retention Time and Charging Media on the Removal of Nitrogen and Phosphorus in the Up-flow Anaerobic/Anoxic Reactor and Water-mill for Sewage Treatment (상향류식 혐기성조, 무산소조 및 수차호기조를 이용한 하수처리시 수리학적 체류시간의 변화와 메디아 충진이 질소 및 인 제거에 미치는 영향)

  • Shin, Myoung-Chul;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • The aims of this study is to examine the effects of the changes in HRT(Hydraulic Retention Time) and media charge in a water-mill, among other operation factors, on the nitrogen and phosphorus removal in order to use up-flow anaerobic reactors, anoxic reactors and water-mill aerobic reactors for sewage treatment. The extension of HRT improved the nitrogen removal efficiency, however the removal pattern was constant regardless of HRT. The removal of phosphorus was constant (80%-90%) regardless of the change in HRT. The removal rate with change in influx load varied such that at the OLR (Organic Load Rate) of 1-3 kg/d, the T-N removal efficiency was 80.7%-88.9% and the T-P removal efficiency was 82.9%-89.3% while at the NLR (Nitrogen Loading Rate) of 0.108-0.156 kg/d the removal efficiencies were 80.7-88.9% (T-N) and 82.9-89.3% (T-P). The analyses of the nitrogen and phosphorous removal characteristics with the C/N and C/P ratio showed that the mean T-N removal rate was 88% at the C/N ratio of 1.2-2.6, and that the mean T-P removal rate was 86% at the C/P ratio of 7.2-14.1. Also, the analysis of nitrogen and phosphorous removal characteristics were analyzed in relation to media charge. The comparison between with and without media charge in the water-mill showed that while the nitrogen removal efficiencies were 86-94% and 85-89% respectively, the difference of phosphorous removal efficiencies were between the two conditions was not significant, thus it suggested that the media charge has less effect on the removal efficiency of phosphorous compared to that of nitrogen.

Studies on the Water Purification Using Water Parsley (미나리 (Oenanthe javanica(Blume) DC)를 이용한 수질정화에 관한 연구)

  • 권성환;나규환;류재근;김종택
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.56-63
    • /
    • 1996
  • The results of the water purification studies using water parsley (Oenanthe javanica) were obtained as follows. The removal rate of nutrient salts increased with longer plant growth periods. The results of this study use the assumption, log(T+1) = $K(C_0-C)^A$, based on Prakish's Theory. The initial concentration was calculated from experimental data. A and K are closely related to the initial concentration. It is possible to model the concentration of residual salts, as time goes by, if concentration is constant. It was observed that water parsley neutralizes acid and alkali substances promptly. The maximum suitable neutralization period is 48 hours. But water parsley withered up in strong acid and alkali solutions within a week. The removal efficiency of Cd progresses in 2 steps, which are unrelated to the initial concentration of Cd. The first part of the curve shows the concentration rapid rate of Cd removal, followed by a levelling off. The removal rate of $NO_x-N$ in the sample water tank containing 0.5 ppm Cd was between 50~80% but the removal rate was less than 20% for the higher concentration. On the other hand, increased amounts of $PO_4-P$ in the sample water tank from the third day on suspected that $PO_4-P$ was desorbed from the water parsley. The accumulation efficiency of Cd in plant was increased in proportion to the initial concentration of Cd. The accumulation phenomenon was observed in the tanks more than 50~100 times.

  • PDF

Characteristics of Phenol Degradation by using UV/TiO2 Photocatalysis (UV/TiO2 광촉매반응에 의한 페놀의 분해 특성)

  • Shin, In-Soo;Choi, Bong-long;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.488-493
    • /
    • 2004
  • The effects were examined from several conditions of $TiO_2$ photocatalysis reaction to phenols degradation by changing it's reacting conditions such as phenol concentration, pH, $TiO_2$ concentration, $H_2O_2$ concentration, flow rate, and intensity of ultraviolet rays. Phenol degradation was more efficient in low concentration of phenol, neutral pH. Phenol degradation appeared to increase as concentration of $TiO_2$ photocatalyst, that of $H_2O_2$ and intensity of ultraviolet rays increased. As $TiO_2$ dosage increased, initial rate constant k linearly increased. When $H_2O_2$ was injected more than optimum, phenol removal rate didn't increase in proportional to the change of $H_2O_2$ concentration as OH radicals was being consumed. When flow rate is less than $4.75m^3/m^2$ day, phenol removal efficiency appeared to decrease as ultraviolet rays transmission rate becomes low by $TiO_2$ suspension coated in photo reaction column. Meanwhile, initial rate constant according to light intensity change in less than $25mW/cm^2$ appeared to be in proportion to light intensity ($mW/cm^2$) Removal efficiency decreased about 12% after 180 minutes of reaction time while showed stable removal efficiency of 100% after 300 minutes when using regenerated $TiO_2$.

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron (개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1717-1726
    • /
    • 2016
  • In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.

Optimum Design of Animal Wastewater Treatment System (畜産廢水處理시스템의 最適說計要因 導出)

  • Oh, In-Hwan;Park, Joeng-Hyun;Kim, Beom-Seok;Lee, Sang-Rak;Maeng, Won-Jae
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 1995
  • An efficient Treatment of animal wastewater is one of the hot issues for preventing the environmental pollution. It should be established the design parameter in order to purify the animal wastewater. A test is carried on in the pilot plant as a simplified activated sludge process. A vibration sieve separator is deviced to keep the pollution load constant by means of separation of solid matter. The BOD removal efficiency of the vibration sieve showed over 50%. As the test results, the BOD contents of the influent was in average of 3,000 mg/I and that of the effluent 85 mg/I. So, the BOD removal rate showed 97% in average. The SS-contents in the primary chamber was about 3,300 mg/I and that of effluent 92 mg/I. The SS removal efficiency showed 97%. The removal rate of total nitrogen and phosphore were in average of 82% respectively. Carrying out in winter season, it showed relatively good results; The design parameter approved in this test can be applied to the full-time farmers.

  • PDF

Degradation of eriochrome black T by potassium ferrate (VI) (칼륨 페레이트에 의한 Eriochrome Black T 분해 연구)

  • Hoang, Nguyen Minh;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • The degradation of EBT (Eriochrome Black T) in an aqueous solution was investigated at various values of pH, Ferrate (VI) dosage, initial concentration, aqueous solution temperature. The maximum degradation efficiency was 95.42% at pH 7 and in that experimental condition, the kapp value was 872.87 M-1s-1. The degradation efficiency was proportional to the dosage of Ferrate (VI). Also, the initial rate constant of EBT degradation increased with decreasing of the EBT initial concentration. In addition, the degradation rate of EBT was increased from 74.04% to 95.42% when the temperature in the aqueous solution was increased from 10℃ to 45℃. The activation energy value was 11.9 kJ/mol for EBT degradation. Overall, the results of the degradation experiment showed that Ferrate (VI) could effectively oxidize the EBT in the aqueous phase.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system

  • Corey, Peter;Kim, Jang K.;Duston, Jim;Garbary, David J.
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.35-45
    • /
    • 2014
  • Palmaria palmata was integrated with Atlantic halibut Hippoglossus hippoglossus on a commercial farm for one year starting in November, with a temperature range of 0.4 to $19.1^{\circ}C$. The seaweed was grown in nine plastic mesh cages (each $1.25m^3$ volume) suspended in a concrete sump tank ($46m^3$) in each of three recirculating systems. Two tanks received effluent water from tanks stocked with halibut, and the third received ambient seawater serving as a control. Thalli were tumbled by continuous aeration, and held under a constant photoperiod of 16 : 8 (L : D). Palmaria stocking density was $2.95kg\;m^{-3}$ initially, increasing to $9.85kg\;m^{-3}$ after a year. Specific growth rate was highest from April to June (8.0 to $9.0^{\circ}C$), 1.1% $d^{-1}$ in the halibut effluent and 0.8% $d^{-1}$ in the control, but declined to zero or less than zero above $14^{\circ}C$. Total tissue nitrogen of Palmaria in effluent water was 4.2 to 4.4% DW from January to October, whereas tissue N in the control system declined to 3.0-3.6% DW from April to October. Tissue carbon was independent of seawater source at 39.9% DW. Estimated tank space required by Palmaria for 50% removal of the nitrogen excreted by 100 t of halibut during winter is about 29,000 to $38,000m^2$, ten times the area required for halibut culture. Fifty percent removal of carbon from the same system requires 7,200 to $9,800m^2$ cultivation area. Integration of P. palmata with Atlantic halibut is feasible below $10^{\circ}C$, but is impractical during summer months due to disintegration of thalli associated with reproductive maturation.

Removal of $NO_x$ by using of $TiB_2$ Photocatalysis ($TiB_2$ 광촉매를 이용한 $NO_x$ 제거)

  • Lee, Yong-Hwan;Choi, Im-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.112-115
    • /
    • 2009
  • This research was performed to purify water quality through removing T-N, and T-P and to estimating rate of $NO_x$ by the response of photocatalyst using ceramics. The ceramics was a mixtures of Titanium Diboride($TiB_2$) which is used to develop armored cars with excellent protective power and lightness, Olivine, and Hwangto with water and was furnaced for an hour at $1160^{\circ}C$. Hwangto and Olivine used in the study are produced at Haenam-gun, Jeonnam, and Andong-city, Gyeongsangbuk-do, respectively. The ground Hwangto and Olivine were seived through PR $100{\times}200$, and $TiB_2$ was a product of SIGMA ALDRICH. The experiment was performed under the sunlight, Mass flow controller was used for constant flow to pass through the pyrex reactor which was fully charged with furnaced ceramics. The concentration of $NO_2$ gas passed through the pyrex reactor was measured by Multi Gas Monitor. The reaction took for 60 minutes, The material was exposed to sunlight for 40 minutes. The sunlight was interrupted before and after the exposure for 10 minutes. The result showed that the concentration of $NO_2$ gas of the ceramics with $TiB_2$ and without $TiB_2$ became reduced and then maintained the same concentration under the sunlight, and became increased when the sunlight is interrupted. The $NO_2$ removing efficiency of the ceramics mixed with $TiB_2$ was 14~43% higher than that of the ceramics without $TiB_2$ under the sunlight. The study showed that the removing rate of $NO_2$ was 80% when the mixture rate of Hwangto, Olivine, and $TiB_2$ was 68%, 30% and 2%.