• 제목/요약/키워드: T-N removal efficiency

검색결과 326건 처리시간 0.025초

T-N 제거공정 개선을 위한 하수처리장 공정 분석 (Analysis of sewage treatment process for the improvement of T-N removal process)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제27권2호
    • /
    • pp.99-107
    • /
    • 2018
  • In order to design the improvement process for T-N removal, the treatment process of Suyoung, Gangbyeon, and Noxan sewage treatment plants (STP) in Busan was anlayzed. Suyoung STP shows a T-N removal efficiency of about 69.8% with MLE(Modified Ludzack ettinger) and A2O+MBR. However, it is necessary to improve the process to maintain over DO of 1 mg/L and is required to install a flow control tank to minimize the rainfall effect. Gangbyun STP shows a about 70.2% T-N removal efficiency with A2O+GFF(gravity fiber filtration). However, in order to improve T-N removal efficiency, it is needed to install MLE process to treat recycle water. Noksan STP shows a T-N removal efficiency of about 71.0% with MLE+Chemical treatment and shows stable T-N concentration in effluent. However, it is required a toxic chemical management process because bad wastewater flows into the STP, also is necessary a process improvement in order to increase internal recycling ratio. Especially, it is required a process improvement to increase HRT of nitrification tank because Suyoung and Gangbyeon STPs shows low nitrification efficiency during winter season.

격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구 (A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch)

  • 이영신;오대민
    • 한국환경보건학회지
    • /
    • 제37권1호
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.

RBC 반응조를 이용한 2단 A/O 공정에서 유기물질 및 질소제거 (Removal of Organics and Nirtogen in Wastewater Using 2 Stage A/O(RBC) Process)

  • 최명섭;손인식
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.59-64
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC-anoxic-RBC process and its application to remove biologically organics and nitrogen. BOD and total-nitrogen(T-N) removal efficiencies were decreased as volumetric loading rate increased. But, the removal efficiency changes of T-N were little, as compared to BOD. Increase of internal recycle rate had few affect of BOD and T-N removal rates. Also, influent allocation(to 2nd anoxic reactor) had few affect of BOD removal efficiency rate. However, when the influent allocation rate was 30%, T-N removal efficiency was increased to 84.1 %. BOD/N ratio applied to 2nd anoxic reactor was increased to range of 3.65-4.37 as influent allocation rate increased to range 20∼35%. But, it might also cause adverse effect such as decrease of denitrification rate in excessive influent allocation rate.

Ferrate(VI)를 이용한 발전소 탈황폐수 처리에 관한 연구 (A study on the desulfurization wastewater treatment using Ferrate(VI))

  • 조은영;박찬규
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.297-301
    • /
    • 2017
  • Wastewater treatment using ferrate (VI) solution is becoming a promising technology for several years, because it is high efficient and harmless technology. In this study, the ferrate (VI) solution was tested to treatment of desulfurization wastewater. The effluent from desulfurization wastewater treatment process of power plant was used as raw water, and the COD and T-N removal efficiency of ferrate(VI) solution were investigated. In the test, as the injection rate increased from 0.1 to 1.0%, the removal efficiency of COD also slightly increased, about 80% of COD were removed in 1.0% of injection rate. In the case of T-N, about 50% of T-N was removed in the condition of 1.0% of injection rate. The removal efficiency of COD and T-N also affected by reaction time, maximum removal efficiency was shown in 30 min of treatment. From these results, the wastewater treatment with ferrate(VI) solution can be great solutions for treatment of non-biodegradable pollutants in wastewater, especially for the 3rd treatment of wastewater.

M-Dephanox 공정 질소 제거 효율 향상 방안에 관한 연구 (The Study for Enhancement of Nitrogen Removal Efficiency in M-Dephanox Process)

  • 류홍덕;이상일
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.74-82
    • /
    • 2006
  • In this study, development of M2-Dephanox and M3-Dephanox process has been tried to enhance the nitrogen removal of M-Dephanox process on the basis of previous study about M-Dephanox. The results showed that T-N removal efficiency of M3-Dephanox process was 8.9% or 11.3% higher than M-Dephanox or M2-Dephanox processes, respectively. This result is due to the lower $NO_3{^-}-N$ concentration in the effluent of M3-Dephanox than of M-Dephanox and M2-Dephanox processes. This results were recurrenced by PASS simulator. As result of simulation by PASS program, effluent $NO_3{^-}-N$ concentration of M3-Dephanox process was 1.4 mg/L and 3.6 mg/L lower than M-Dephanox and M2-Dephanox processes. In the study about optimization of M3-Dephanox processes by PASS program, SRT greatly affected T-N removal of M3-Dephanox process, whereas, the recycle rate and recirculation rate did little affect T-N removal efficiency of M3-Dephanox. In the study about optimization of reactors following the nitrification reactor of M3-Dephanox process, it was shown that the best optimum volume ratio of denitrification reactor, intermittently aerated reactor and anoxic reactor for the T-N removal were 29.1(%) : 32.7(%) : 38.2(%). T-N removal efficiency at this volume ratio was similar to T-N removal efficiency at the volume ratio of 36.3(%) : 36.3(%) : 27.4(%) designed for the lab-scale M3-Dephanox.

상향류식 혐기성조, 무산소조 및 수차호기조를 이용한 하수처리시 수리학적 체류시간의 변화와 메디아 충진이 질소 및 인 제거에 미치는 영향 (The Effects of Changing of Hydraulic Retention Time and Charging Media on the Removal of Nitrogen and Phosphorus in the Up-flow Anaerobic/Anoxic Reactor and Water-mill for Sewage Treatment)

  • 신명철;이영신
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.64-70
    • /
    • 2009
  • The aims of this study is to examine the effects of the changes in HRT(Hydraulic Retention Time) and media charge in a water-mill, among other operation factors, on the nitrogen and phosphorus removal in order to use up-flow anaerobic reactors, anoxic reactors and water-mill aerobic reactors for sewage treatment. The extension of HRT improved the nitrogen removal efficiency, however the removal pattern was constant regardless of HRT. The removal of phosphorus was constant (80%-90%) regardless of the change in HRT. The removal rate with change in influx load varied such that at the OLR (Organic Load Rate) of 1-3 kg/d, the T-N removal efficiency was 80.7%-88.9% and the T-P removal efficiency was 82.9%-89.3% while at the NLR (Nitrogen Loading Rate) of 0.108-0.156 kg/d the removal efficiencies were 80.7-88.9% (T-N) and 82.9-89.3% (T-P). The analyses of the nitrogen and phosphorous removal characteristics with the C/N and C/P ratio showed that the mean T-N removal rate was 88% at the C/N ratio of 1.2-2.6, and that the mean T-P removal rate was 86% at the C/P ratio of 7.2-14.1. Also, the analysis of nitrogen and phosphorous removal characteristics were analyzed in relation to media charge. The comparison between with and without media charge in the water-mill showed that while the nitrogen removal efficiencies were 86-94% and 85-89% respectively, the difference of phosphorous removal efficiencies were between the two conditions was not significant, thus it suggested that the media charge has less effect on the removal efficiency of phosphorous compared to that of nitrogen.

고흥만 간척지 내 인공습지에 의한 농경배수 정화효율에 관한 연구 (Removal Efficiency of Pollutants in Agricultural Wastewater by Constructed Wetlands on Reclaimed Land in the Goheung Bay)

  • 유훈선;강동환;권병혁
    • 한국습지학회지
    • /
    • 제11권3호
    • /
    • pp.37-47
    • /
    • 2009
  • 본 연구지역은 전라남도에 위치한 고흥만 간척지 내 인공습지이며, 인공습지수와 주변 유입수의 수질특성을 파악하기 위해 2008년 3월 15일 및 2009년 1월 10일에 12개 지점에서 현장조사를 수행하였다. 수온, pH, DO, EC 및 salinity 항목은 현장측정 되었으며, 채수된 시료는 실내에서 TOC, Cl-, COD, TSS, T-P 및 T-N 성분을 분석하였다. 현장 관측된 5개 항목은 인공습지에 비해 유입지점들에서 높게 나타났으며, 이는 주변 농경 작지에서 유입되는 오염물질에 의한 것이다. 인공습지수와 유입수 내 농도비는 TOC 성분은 1월에, Cl 성분은 3 월에 더욱 높은 값을 보였다. COD 성분은 인공습지수에 대한 유입수의 농도비가 1.37배와 1.49배로서 유사하였다. 유입지점들에서 T-P와 T-N 성분의 평균값은 인공습지 내에서보다 3배 이상 높았으며, 인공습지의 자정능력에 의해 농도가 저감되었다. 본 연구지역의 인공습지에서는 유입수 내 Cl, T-P, T-N 성분의 정화효율이 높은 것으로 나타났다. Cl- 성분의 정화효율은 1차 관측 시 83%, 2차 관측 시 76% 이었으며, 이는 인공습지수에 의한 희석효과에 의한 것이다. T-P 성분의 정화효율은 67%(1차 관측)와 69%(2차 관측), T-N 성분은 100%(1차 관측)와 95%(2차 관측) 로서 매우 높았다. 본 연구에서 T-N의 정화효율이 비현실적으로 높은 것은 유입수의 양이 소량이어서 인공습지수 내에서는 질소 농도가 분석한계 이하로 나타났기 때문이다. 본 연구에서는 T-P 성분의 정화효율이 1월에, T-N 성분은 3월에 높게 나타나 생장기와 동절기의 영향에 의한 것으로 판단된다.

  • PDF

오·폐수처리를 위한 수생식물 다공성 소결체여상의 기초연구 (A Study on the filtering bed of porous sintering-product and hydrophytes for sewage treatment)

  • 김주형;윤찬;오준성
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.89-97
    • /
    • 2001
  • 본 연구는 다공성 소결체로 충진된 여상에 수생식물을 식재하여 오 폐수를 처리하는 기술로서, 수질오염물질의 고효율 처리를 위한 적정조건을 찾는데 연구목적을 두었다. 실험조건으로 수질오염물질(COD, T-N, T-P), 수생식물의 종류, 여재의 종류와 규격, 그리고 체류시간을 변화시켰다. 수질오염물질 중 COD는 $50{\sim}450mg/{\ell}$ 부하량 범위에서 73.8~87.1%의 처리효율을 보였으며, T-N은 7~124mg/L 범위에서 61.3~77.3%의 처리효율을, 그리고 T-P는 3~27mg/L 범위에서 89.5~99.1%의 처리효율을 얻을 수 있었다. 3종류 수생식물의 수질오염물질처리 비교실험에서는 COD와 T-N 처리는 창포, 갈대, 미나리 순으로 나타났으며, T-P 처리는 갈대가 창포보다 약간 더 우수한 것으로 분석되었다. 4종류 여재의 수질오염물질처리 비교실험에서는 다공성 소결체, 콩자갈, 폐타이어, 폐콘크리트 순으로 나타났으며, 다공성 소결체 경우는 직경이 작을수록 더욱 좋은 결과를 얻을 수 있었다. 따라서, 창포가 식재된 직경 5mm의 다공성 소결체여상의 경우 24hr 체류시간과 COD $250mg/{\ell}$, T-N $70mg/{\ell}$ 그리고 T-P $15mg/{\ell}$의 부하량 조건에서 각각 80%, 70% 그리고 90% 이상의 처리효율을 얻을 수 있어서 수생식물 다공성 소결체여상은 생활하수와 같은 저오염부하량을 갖는 오 폐수처리에 적합한 친자연형 폐수처리기술이라고 결론지을 수 있다.

  • PDF

빛의 조사기간으로 본 호기성 고율 안정조 프로세스의 영양물질 제거 (The Nutrients Removal in Aerobic High Rate Ponds Through the Lighting Period)

  • 공석기
    • 환경위생공학
    • /
    • 제11권1호
    • /
    • pp.83-91
    • /
    • 1996
  • It is not too much to say that the territorial inhabitants' concerns are wholly c concentrated on the environmental preservation-problem and development-problem in Korea given effect to the local self-government system. At a time like this I was studied the effect on nutrients removal through lighting period in aerobic high rate pond and we know that waste stabilization pond method is the most economical and energy saving wastewater treatment technology than others. At the results which was studied through operating the reactor-l artifically main-tained at a temperature, $25^{\circ}C$, a light intensity, 3000lux, and a lighting period, 24hrs and the reactor-2 artifically maintained at a tern야rature, $25^{\circ}C$ and a light intensity 3000lux, and a lighting period period, 12hrs, It has appeared for 24hrs.-lighting period -reactor-1 to be prior to the reactor-2. The attained results are that 1. reactor-1 is prior to reactor-2 on oxygen-generation 2. reactor-1 is prior to reactor-2 on algal production 3. COD removal efficiency, 90.76%, T-N removal efficiency, 80%, T-P removal e efficiency, 74.47 % in reactor-2, in reactor-1 COD removal efficiency, 94.85 %, T-N removal efficiency, 98.07%, T-P removal efficiency, 72.13% are, so the treatment efficiency of reactor-1 is more excellent than things of reactor-2 4. it appeared that the detention time is 8, 9days.

  • PDF

SAB 고율미생물반응기를 이용한 축산폐수처리의 성능 평가 (Estimation of Cattle Wastewater Treatment using Singang Advance Biology Reactor (SAB))

  • 임봉수;김도영;박성순
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.727-734
    • /
    • 2009
  • This study was carried out to evaluate the high rate biological reactor such as lab scale reactor before the application in site, and to get the basic data for possibility using liquid fertilizer with the effluent from biological reactor when the centrifugal machine was applied. The total volume of this reactor in 6 L, in composted of anoxic reactor (2 L), aerobic reactor (2 L), and nitification reactor (2 L). BOD removal efficiency rates when centrifugal machine was applied after effluent from biological reactor are over than 95%. This biological reactor was required post process to satisfy the effluent standards, and was need centrifugal machine to control the washout of microbes in the reactor. T-N removal efficiency rate in HRT 24 hr with centrifugation is 80.0%, and it is desirable to operate less than $1.3kgN/m^3{\cdot}d$ for 70% of T-N removal efficiency rate. T-P removal efficiency rate in HRT 24 hr is 68.2%, and become higher 71.3% after centrifugation. Considering in the 28.6% T-N removal efficiency rate, the nitrogen contents of the effluent from reactor is 0.34% to satisfy the liquid fertilizer.