• Title/Summary/Keyword: T-N제거

Search Result 442, Processing Time 0.029 seconds

The Case of Industrial Factory Wastewater Treatment and Reusing by Using of Constructed Wetland (식물정화조를 이용한 공업용 폐수의 정화 및 재활용 사례)

  • 김혜주;이옥하
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2002
  • Constructed wetland was built for industrial factory wastewater treatment with environmentally sound method from July to October, 2000. Ultimately this case study was carried out to conserve water quality of river and underground water and to provide wildlife habitat and rest place for people in the industrial area. The size of constructed wetland was 10m$\times$6m (upper area) with a treatment capacity of 2.5㎥ per day. It was supplied with wastewater 0.625㎥ at intervals of six hours. Vertical flow system was chosen to promote efficiency. Draining layer was built one meter in soil depth out of sand mixed with pebbles in a ratio of two to one. Perennial emergent plants, Phragmites communis, Typha orientalis, Juncus effusus, Iris pseudoacorus, 20 individuals per square meter were planted. In the aspect of reusing, eco-pond was created for increasing biological species diversity and also deck and information signboard were established for the education of environment. As the result of monitoring, it was revealed that the constructed wetland was effective in removal of BOD$_{5}$, COD, T-N, T-P and has being gradually improved as a wildlife habitat(biotope).

Treatment Characteristics and Application of DAF Process for Effective Solid Separation in BNR Municipal Wastewater Treatment System (BNR 하수처리시스템에서 효과적 고형물 분리를 위한 DAF 공정의 적용과 처리특성)

  • Kwak, Dong-Heui;Rhu, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2010
  • Many plants have been improved to adapt the target of the biological treatment processes changed from organics to nutrients since the water quality criteria of effluent was reinforced and included T-N and T-P for the municipal wastewater treatment plant. To meet the criteria of T-N and T-P, the conventional biological reactor such as aeration tank in activated sludge system is changed to the BNR (biological nutrient removal) processes, which are typically divided into three units as anaerobic, anoxic and oxic tank. Therefore, the solid separation process should be redesigned to fit the BNR processes in case of the application of the DAF (dissolved air flotation) process as an alternatives because the solid-liquid separation characteristics of microbial flocs produced in the BNR processes are also different from that of activated sludge system as well. The results of this study revealed that the microbial floc of the anaerobic tank was the hardest to be separated among the three steps of the unit tanks for the BNR processes. On the contrary, the oxic tank was best for the removal efficiency of nutrients as well as suspended solid. In addition, the removal efficiency of nutrients was much improved under the chemical coagulation treatment though coagulation was not indispensable with a respect to the solid separation. On the other hand, in spited that the separation time for the microbial floc from the BNR processes were similar to the typical particles like clay flocs, over $2.32{\times}10^3$ ppm of air volume concentration was required to keep back the break-up of the bubble-floc agglomerates.

Site Assessment for the Water Purification Effect of Porous Concrete by using Effective Micro-organisms (유용미생물을 이용한 포러스콘크리트의 수질정화특성에 대한 현장평가)

  • Kim, Bong-Kyun;Park, Jun-Seok;Seo, Dae-Seuk;Kim, Wha-Jung;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.109-119
    • /
    • 2015
  • In recent years, a rapid growth in the population and urbanization led to an increasing industrial growth. The inadequate treated-wasted water from industry and various non-point sources causes significant negative effects on the stream water. For past few decades, extensive researches have been performed on water purification process. The purpose of this study is to investigate mechanical performance and water purification properties of porous concrete by using effective microorganisms through the site assessment test. The mechanical performance evaluation results showed that the increase void ration caused an decrease in the strength. The optimal mix rate was found to be 15% void rate From the site assessment, it was evaluated that the porous concrete improved the quality of the water and the purification ratios are 34.1 for SS, 14.6% for BOD, 34.9% for COD, 11.4% for T-N, and 12.6% for T-P. The porous concrete and the related purification technique can reduce the non-point pollution sources flowing into the river.

Effect of Pollutant Loading and Flow Distance to Wastewater Treatment Efficiency in the Constructed Wetland System (오염부하량 및 유하거리가 인공습지에 의한 폐수처리 효율에 미치는 영향)

  • 김형중;김선주;윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.5
    • /
    • pp.97-108
    • /
    • 1997
  • Natural wastewater treatment systems using the constructed wetland system were evaluated for the wastewater from the industrial complex in rural areas. For the treatment of wastewater from the industrial complex in rural area, a pilot plant of the constructed wetland system was installed at Baeksuk agri-industrial complex in ChunahnCity, Chunchungnam-Do. The experiment with this pilot plants was performed for 1996 and 1997. Results of the study were summarized as follows. For the BOD and COD, when the pollutant loading of them was about 1 3.8g/$m^2$. day (the concentration was l24.0mg/${\ell}$) arid 24.4g/$m^2$.day(the concentration was 220.Omg/${\ell}$), the removal rate of them was high, 90.2% and 93.4%, respectively. For the SS, the effluent concentration was consistently lower than the water quality standard even though the influent concentration varied significantly, which showed that SS was removed by the system effectively which consist of soil and plants. For the T-N and T-P, when the influent pollutant loading of them were moderately high, 2.8g/$m^2$.day to 7.4g/$m^2$. day(concentration 25.0mg/${\ell}$ to 49.7mg/${\ell}$) for T-N and 1.0g/$m^2$.day to 2.6g /$m^2$.day(concentration 8.6mg/${\ell}$ to 14.7mg/${\ell}$) for T-P, the removal rate of them were 86.5% and 94.0%, respectively. The removal rate by the flow distance increased rapidly in the first 4m from the inlet zone, and gradually there after. The width of system was 2m. Overall, the result showed that constructed wetland system is a feasible alternative for the treatment of wastewater from industrial complex in rural areas. Compared to existing systems, this system is quite competitive because it requires low capital cost, almost no energy and maintenance, and therefore, very cost effective.

  • PDF

A Study on the Ecology of the Golden Apple Snail, Pomacea canaliculata (Lamark) in Chungnam and Jeonbuk Province of Korea (충남 및 전북지역의 왕우렁이 생태 연구)

  • Seo, Hong-Yul;Paik, Chae-Hoon;Choi, Man-Young;Lee, Geon-Hwi;Lee, Kyeong-Bo;Noh, Tae-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.772-780
    • /
    • 2010
  • The golden apple snail-Pomacea canaliculata was an alien species and introduced into Korea as table use in 1983. This species is possible pest in direct seeded rice paddy in Korea. We investigated the effects of this exotic snail on the macrophytes and the water quality in water canal. Also, the basic life cycle of this species and the overwintering ecology in Chungnam and Jeonbuk province were elucidated. A survey of natural water canal in Korea showed that high densities of the snail were associated with absences of macrophytes-Hydrilla verticillata, Ceratophyllum demersum, Spirodela polyrhiza and Lemna perpusilla. Experiments in water tank also demonstrated that the golden apple snail can cause the loss of macrophytes, and increase the EC(Electric conductivity), COD(Chemical oxygen demand), T-N(Total nitrogen) and T-P(Total phosphorus) in water.

Advanced Treatment of Shipboard Sewage by RCM Process with BM (복합미생물제제를 이용한 RCM공법의 선박오수 처리장치 적용에 관한 연구)

  • Ha, Shin-Young;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.451-456
    • /
    • 2014
  • Lab scale experiment was carried out to study biological wastewater treatment technology developed for shipboard. RCM process using BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. RCM process is an environmental friendly treatment system, with minimum production of sludge. In the test, BOD5, CODcr, T-N and T-P were reduced a 96%, 97%, 78% and 81.68% respectively. From the result it was suggested that RCM process with BM might be a suitable process for shipboard sewage treatment, maintenance of useful microorganisms and creating special environment as the SDC tank is circulating in the non-biodegradable organics sludge generated during the wastewater treatment, thus reducing the amount of sludge generated. Therefore, the RCM process does not require additional equipment to strengthen it to meet the marine pollution standards.

A Study on Fluid Dynamics for Effect of Agitation Velocity on Nutrients Removal in High Rate Algae Stabilization Pond (고율 조류 안정화지에서 교반속도가 영양염류 제거에 미치는 영향에 관한 유체동역학적 연구)

  • 공석기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2001
  • HRP(high rate pond) which had kept the manufactured clay of 3cm-thickness as benthic clay in reactor and the 6 flat-blade turbine as impeller for agitation was named HRASP(high rate algae stabilization pond). And the experiment for treatment of artificial synthesis wastewater containing COD :300mg/$\ell$, NH$_3$-N : 300mg/$\ell$, T-P : 9mg/$\ell$ as nutrients was been performed successfully. This reactor was been operated under conditions : 24hrs.-irradiation and water temperature, $25^{\circ}C$ and pH 7 and agitation velocity, 15, 30, 45rpm and the effect of agitation velocity on algal bioaccumulation of nutrients was been studied with view point of fluid dynamics. The next followings could be obtained as results. 1. The agitation with a turbine impeller blade in HRASP makes clay particle indicate superior suspension effect by means of forming of excellent curl/shear flow in reactor. 2. The excessive suspension of clay particle which is created at 45rpm as rotation velocity of impeller blade of turbine disturbs the light penetration and algal photosynthesis reaction. 3. Efficiencies for removal of nutrients come out as COD : 93.9%~94.3%, ($NH_3-N + NO_3-N$) : 81.9%~99.0%, T-P : 46.8%~53.6%. 4. Kuo values of $K_1$for algal growth come out seperately as 15rpm : $1.876{\times}10^{-2}, 30rpm : 4.618{\times}10^{-3}$. 5. Kuo values of $K_2$for removal of N, P come out seperately as 15rpm : $8.403{\times}10^{-1}$ and $1.397{\times}10^{-1}$, 30rpm : $4.823{\times}10^{-1} and 2.052{\times}10^{-1}$. 6. It can be guessed easily that the excessive agitation can inhibit the algal and bacterial symbiotic reaction if it is considered that micro organism\` sense to preservation of life is relied on natural function of metabolism. Therefore the studies for this matter should be followed continuously.

  • PDF

A Study of Ultra Wideband Impulse Radio Systems for Multiple Access Communication (다원접속 통신을 위한 초광대역 임펄스 무선 전송 시스템 연구)

  • 이양선;강희조;문용규;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.224-231
    • /
    • 2003
  • In this paper we proposed system parameter values of ultra-wideband Impulse Radio systems for the frequency band(3.1~10.6GHz), which is allocated by Federal Communications Commission(FCC). We also analyzed performance of the proposed system in the multiple access interference environment. According to result, application of possible pulse duration($t_{n}$) is very limited by 0.04~0.0326 ns in permission frequency range that establish in FCC. In the case of the same pulse signal power, we could know that system performance was changed by pulse repetition number($N_{s}$ ) regardless of pulse duration. Thus, We could know that we have to need duration of monocycle pulse and setting of frame un it time(Τ$_{f}$ ) according to multi user numbers and design proper pulse repetition number by transfer rate in multiple access systems design. In the IR system that needs high speed transmission more than 50 Mbps in multiple access interference environment, we could know that very serious performance decrease by multiple access interference happens. Therefore, as the design of high speed multiple access IR system, it should be designed to additional improvement techniques that can remove multiple access interference at the same time.

Estimation of Nutrient Removal Efficiency and Phase Conversion Rate of Single Reactor SBR and SBR with Flexible Vertical (단일 및 가변형 SBR 공법의 영양염류 처리효율 및 "상"전환속도 평가)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1215-1221
    • /
    • 2005
  • The purpose of this research was to compare the nutrient removal efficiency, and to estimate the net reaction time in order to calculate a "phase" transfer rate. SBR(SBR1) with flexible verticals and single reactor SBR(SBR1). Consequently, the removal efficiencies of $COD_{Cr}$, and $BOD_5$ in SBR1 and SBR2 were 91.5%, 97.5% and 90.4%, 97.3%, Respectively. Accordingly, the organic removal efficiency was not distinguished in both processes. In the T-N and T-P removal efficiencies, however, SBR1 obtained higher removal efficiency than SBR2, at 12.1% and 7.6% respectively. Also, in the experiment to estimate the "phase" transfer rate, SBR1 was higher than SBR2 Because SBR1 has two phases in the single reactor simultaneously, it has the buffer capacity to reduce the "phase" transfer time and provides a definite reaction condition.

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.