• Title/Summary/Keyword: T-50 Advanced Trainer

Search Result 22, Processing Time 0.017 seconds

A Design for Six Sigma: A Robust Tool in Systems Engineering Process

  • Yoon, Hee-Kweon;Byun, Jai-Hyun
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.346-352
    • /
    • 2012
  • While systems engineering has been widely applied to complex system development, some evidences are reported about major budget and schedule overruns in systems engineering applied. On the other hand, many organizations have been deploying Design for Six Sigma (DFSS) to build Six Sigma momentums in the area of design and development for their products and processes. To explore the possibility of having a DFSS complement systems engineering process, this process reviews the systems engineering with their categories of effort and DFSS with its methodologies. A comparison of the systems engineering process and DFSS indicates that DFSS can be a complement to systems engineering for delivering higher quality products to customers faster at a lower cost. We suggest a simplified framework of systems engineering process, that is, PADOV which was derived from the generic systems engineering process which has been applied to the development of T-50 advanced supersonic trainer aircraft by Korea Aerospace Industries (KAI) with technical assistance of Lockheed Martin. We demonstrated that each phase of PADOV framework is comprehensively matched to the pertinent categories of systems engineering effort from various standards.

Development of Full-scale Airframe Durability Test Technique (항공기 전기체 내구성시험 기법 개발)

  • Shul, Chang-Won;Yang, Myung-Seog;Lee, Kee-Bhum;Jung, Jae-Kwon;Kang, Hui-Won;Lee, Kyung-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.117-125
    • /
    • 2004
  • This paper describes the test technique for the full-scale airframe durability test according to the military handbook(MIL-HDBK-1530) and ASIP(Aircraft Structure Integrity Program) to evaluate structural integrity and to obtain basic data for IPA(Initial Production Approval) of the Korean advanced trainer(T-50). This paper covers the full-scale airframe floating setup technique, the optimized test load simulation method, test rig design technique, test setup design and installation techniques, test safety device design and operation technique, and durability test results. As 1st life durability test was successfully performed, it was confirmed that this method is available in a full-scale airframe structural test.