• Title/Summary/Keyword: T axis

Search Result 845, Processing Time 0.031 seconds

Design of Six-Axis Force/Moment Sensor for Ankle-Rehabilitation Robot (발목재활로봇을 위한 6축 힘/모멘트센서 설계)

  • Kim, Yong-Gook;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • Most serious patients who have the paralysis of their ankles can't use of their feet freely. But their ankles can be recovered by an ankle bending rehabilitation exercise and a ankle rotating rehabilitation exercise. Recently, the professional rehabilitation therapeutists are much less than stroke patients in number. Therefore, the ankle-rehabilitation robot should be developed. The developed robot can be dangerous because it can't measure the applied bending force and twisting moment of the patients' ankles. In this paper, the six-axis force/moment sensor for the ankle-rehabilitation robot was specially designed the weight of foot and the applied force to foot in rehabilitation exercise. As a test results, the interference error of the six-axis force/moment sensor was less than 2.51%. It is thought that the sensor can be used to measure the bending force and twisting moment of the patients' ankles in rehabilitation exercise.

Development of Robotic Tools for Chemical Coupler Assembly

  • Jeong, Sung-Hun;Kim, Gi-Seong;Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.953-959
    • /
    • 2022
  • In this paper, the design result of robotic tools and the development of robot control system for chemical coupler assembly are presented. This research aims to eliminate the risk of chemicals exposed to human operators by developing the robotic tools and robot automation system for chemical tank lorry unloading that were done manually. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, the 6-axis compliance device is employed, which can provide not only enough compliance between couplers but also F/T sensing. The 6-axis compliance device having large force and moment capacity is designed. A simple linear gripper with rack-and-pinion is designed to grasp two sizes of couplers. The proposed robot automation system consists of 6-DOF collaborative robot with offset wrist, 6-axis compliance device with F/T sensing, linear gripper, and two robot visions.

Consumer's Textile Sensibility in regard to Purchase Experience of Apparel Products in e-Business

  • Shin, Sang-Moo
    • Journal of Fashion Business
    • /
    • v.6 no.6
    • /
    • pp.105-111
    • /
    • 2002
  • E-business has been regarded as new type of marketing channels and has been growing rapidly. The purpose of this study was to investigate textile sensibility depending on consumers' purchase experience of apparel product in e-business. The analyses of 202 questionnaires were conducted by frequency, mean, and standard deviation, and t-test using SPSS 10.0. Computer setting environment was 1280$\times$1024 resolution with 96 DPI (dots per inch) for this experiment. The results of this research were as follows: Melton (flat axis), habutae (thin axis), suede (wet axis), and terry (rustic axis) showed that there were no significant differences in textile sensibility regarding purchasing experience in the cyber apparel store. But oxford (hard axis) showed that purchasing experience group perceived less modern and smooth textile sensibility than no purchasing experience group. In case of linen (dry axis), purchasing experience group showed less modern textile sensibility. In case of muslin (soft axis), purchasing experience group had more flat and less soft textile sensibility than no purchasing experience group. In case of homespun (thick axis), purchasing experience group perceived less modern textile sensibility than no purchasing experience group.

Excellent Crystallinity of Ba Ferrite Layers Deposited on Pt(111) Underlayers

  • Matsushita, Nobuhiro;Feng, Jie;Watanabe, Koh;Ichinose, Makoto;Nakagawa, Shigeki;Naoe, Masahiko
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.315-317
    • /
    • 2000
  • A magnetoplumbite type of Ba ferrite(BaM) layers were deposited on Pt(111) and Pt(200) layers, and their c-axis orientation and magnetic characteristics were compared each other. The as-deposited BaM layer on Pt(111) one at the substrate temperature $T_s$ above $500^{\circ}C$ revealed remarkable c-axis orientation. The saturation magnetization 4$\piM_s$ and the perpendicular coercivity $H_{c⊥}$ of the films as-deposited at $T_s$ of $600^{\circ}C$ were 4.0kG and 2.5kOe, respectively. On the other hand, BaM ferrite layer deposited on Pt(200) layer at $T_s$ as relatively low as $500^{\circ}C$ also revealed weak c-axis orientation as well as (107) one and the films as-deposited at $T_s$ of $600^{\circ}C$ exhibited 4$\piMs_{and}$ $H_{c⊥}$ of 2.8kG and 2.5kOe, respectively. It was suggested that although chemical activity of Pt surface was effective for the formation of BaM crystallites, the lattice matching was also important for obtaining BaM layer with good c-axis orientation and large perpendicular anisotropy.sotropy.

  • PDF

Kinematic Analysis of T-Stop Motion by Inline Skate Rolling Speed (인라인 스케이트 활주속력에 따른 T-Stop의 운동학적 분석)

  • Han, Je-Hee;Woo, Byung-Hoon;Kim, Jeong-Goo;Kim, Tae-Whan;Kim, Sung-Sup;Kim, Eui-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.355-364
    • /
    • 2010
  • The purpose of this study was to investigate the kinematical analysis of T-stop motion by inline skate rolling speed. Six subjects were participated in the experiment(age: $35.0{\pm}3.3$ yrs, weight: $72.70{\pm}5.1\;kg$, height: $176.30{\pm}3.1\;cm$, career: $10.00{\pm}2.5$ yrs). The study method adopted 3-dimensional analysis and 2 cameras for filming to analyze the required displacement of center of mass, displacement of right and left hip joint, displacement of right and left knee joint, displacement of trunk tilt using by APAS. The results were as follows; In anterior-posterior displacement of COM, the faster rolling speed, the longer displacement at phase 2. In vertical displacement of COM, the faster rolling speed, the lower displacement. In medial-lateral displacement of COM, there was no significant on rolling speed. In angular displacement of right thigh segment, the faster rolling speed, the bigger displacement in X and Z axis. In angular displacement of left thigh segment, the faster rolling speed, the lower displacement in X axis. In angular displacement of right shank segment, the faster rolling speed, the bigger displacement in Z axis. In angular displacement of left shank segment, the faster rolling speed, the bigger displacement in X and Y axis. In angular displacement of trunk segment, the faster rolling speed, the bigger displacement in Z axis.

Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force (3축 힘센서를 이용한 두 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Jong-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

Tibial Axis-Talar Ratio Measured on Standing Ankle Lateral Radiographs (족관절 기립 측면 사진에서 측정한 경골축-거골비)

  • Oh, Hyoung-Keun;Suh, Jin-Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.10 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Purpose: To present tibial axis-talar ratio and tibia-ankle surface angle in lateral measured on standing ankle lateral radiographs of adults who did not have specific ankle pathology. Materials and Methods: On Fifty-six radiographs without ankle osteoarthritis and malalignment, radiographic measures were performed with use of a custom dizitizing program based on $PV-WAVE^{(R)}$. AP ankle alignment was quantified by tibia axis-talar ratio (TTR) and tibia ankle surface angle in lateral (TLS angle). The data was compared with previously reported american data and analyzed using a t-test. Results: The average TTR and TLS angle of our series were $33.9{\pm}3.3%$, and no significant difference compared with reported american adults (p=0.152). Conclusion: The T-T ratio and TLS angle measured on standing ankle lateral radiographs of our series were $33.9{\pm}3.3%$ and $80.4{\pm}3.3^{\circ}$. This measures appear to be a useful measure for determining AP ankle alignment.

  • PDF

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.