• 제목/요약/키워드: T Cell Development

검색결과 984건 처리시간 0.028초

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • 한국동물생명공학회지
    • /
    • 제37권3호
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Perspectives of AIDS Vaccine Development: T Cell-based Vaccine

  • Sung, Young Chul
    • IMMUNE NETWORK
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2002
  • Estimated number of adults and children newly infected with HIV-1 during 2001 alone is 5 million in total. An effective vaccine, in addition to education & public health approaches, has been believed to be the best option to stop the HIV-1 transmission, especially for developing countries. Among AIDS vaccine candidates, DNA vaccine is relatively safe and, in a certain extent, mimics some attributes of live attenuated vaccine, with regard to in vivo gene expression & the type of immunity induced. We recently demonstrated that DNA vaccines expressing SIVmac239 structural and regulatory genes, augmented with coadministration of IL-12 mutant induced the strongest T cell responses, resulting in low to undetectable setpoint viral loads, stable $CD4^+$ T cell counts, and no evidence of clinical diseases or mortality by day 420 after challenge. This finding is the second demonstration, following the protective result of live attenuated SIV vaccine in SIVmac-rhesus monkey model, which was known to have safety problem. So, our DNA vaccines could give a significant impact on HIV-1 epidemic by slowing or stopping the spread of HIV-1, leading to eventual eradication of HIV-1 and AIDS in the population.

Use of Flp-Mediated Cassette Exchange in the Development of a CHO Cell Line Stably Producing Erythropoietin

  • Kim, Min-Soo;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1342-1351
    • /
    • 2008
  • The feasibility of the use of Flp-mediated cassette exchange in the development of a CHO cell line, which produces erythropoietin (EPO) stably and largely, was investigated. A stable, high enhanced green fluorescence protein (EGFP)-producing clone was screened by extensive flow cytometric analysis. An EPO expression unit was targeted into the premarked locus of the stable parental clone by Flp-mediated cassette exchange and a correctly targeted clone (FC28T7) was obtained. The EPO production of FC28T7 was proven to be stable in long-term culture. Furthermore, the Flp-mediated cassette exchange did not alter the stable parental clone's characteristics concerning transgene expression level and stability. Taken together, the data obtained here indicated that the establishment of CHO cell lines stably producing a desired protein is achievable using Flp-mediated cassette exchange.

Treatment of Autoimmune Diabetes by Inhibiting the Initial Event

  • Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.194-198
    • /
    • 2013
  • Recent papers have shown that the initial event in the pathogenesis of autoimmune type 1 diabetes (T1D) comprises sensing of molecular patterns released from apoptotic ${\beta}$-cells by innate immune receptors such as toll-like receptor (TLR). We have reported that apoptotic ${\beta}$-cells undergoing secondary necrosis called 'late apoptotic' ${\beta}$-cells stimulate dendritic cells (DCs) and induce diabetogenic T cell priming through TLR2. The role of other innate immune receptors such as TLR7 or TLR9 in the initiation of T1D has also been suggested. We hypothesized that TLR2 blockade could inhibit T1D at the initial step of T1D. Indeed, when a TLR2 agonist, $Pam3CSK_4$ was administered chronically, the development of T1D in nonobese diabetic (NOD) mice was inhibited. Diabetogenic T cell priming by DCs was attenuated by chronic treatment with $Pam3CSK_4$, indicating DC tolerance. For the treatment of established T1D, immune tolerance alone is not enough because ${\beta}$-cell mass is critically reduced. We employed TLR2 tolerance in conjunction with islet transplantation, which led to reversal of newly established T1D. Dipeptidyl peptidase 4 (DPP4) inhibitors are a new class of anti-diabetic agents that have beneficial effects on ${\beta}$-cells. We investigated whether a combination of DPP4 inhibition and TLR2 tolerization could reverse newly established T1D without islet transplantation. We could achieve normoglycemia by TLR2 tolerization in combination with DPP4 inhibition but not by TLR2 tolerization or DPP4 inhibition alone. ${\beta}$-cell mass was significantly increased by combined treatment with TLR2 tolerization and DPP4 inhibition. These results suggest the possibility that a novel strategy of TLR tolerization will be available for the inhibition or treatment of established T1D when combined with measures increasing critically reduced ${\beta}$-cell mass of T1D patients such as DPP4 inhibition or stem cell technology.

한국산 꺽지과 어류 3종의 세포유전학적 연구 (Cytogenetic Analysis of Three Centropomid Species in Korea)

  • 방인철;남윤권;노충환;박준택;한경호
    • 한국수산과학회지
    • /
    • 제34권1호
    • /
    • pp.17-20
    • /
    • 2001
  • 한국산 꺽지과 어류 3종에 대한 세포유전학적 기초 자료를 얻기 위하여 염색체 핵형, 적혈구 세포 및 핵의 크기와 DNA 함량을 조사하였다 꺽지 (Coreoperca herzi), 꺽저기 (C. kawamebari) 및 쏘가리 (Siniperca schezeri)의 핵형은 각각 2n=48 (4SM+44A, T), 2n=48 (6SM+42A, T) 2n=48 (4SM+44A, T)이었으며, 암수간 heteromorphic한 성염색체는 발견할 수 없었다. 쏘가리의 적혈구 세포 및 핵의 표면적과 체적은 다른 2종보다 작았다. DNA함량은 적혈구 세포 크기에서 같은 경향을 보여, 쏘가리가 1.47pg/cell로 꺽지 (1.83pg/cell) 및 꺽저기 (1.85pg/cell)보다 유의하게 작았다.

  • PDF

Enhanced Induction of T Cell Immunity Using Dendritic Cells Pulsed with HIV Tat and HCMV-pp65 Fusion Protein In Vitro

  • Park, Jung-Sun;Park, Soo-Young;Cho, Hyun-Il;Sohn, Hyun-Jung;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.182-189
    • /
    • 2011
  • Background: Cytotoxic T lymphocytes (CTLs) appear to play an important role in the control and prevention of human cytomegalovirus (HCMV) infection. The pp65 antigen is a structural protein, which has been defined as a potential target for effective immunity against HCMV infection. Incorporation of an 11 amino acid region of the HIV TAT protein transduction domain (Tat) into protein facilitates rapid, efficient entry into cells. Methods: To establish a strategy for the generation of HCMV-specific CTLs in vitro, recombinant truncated N- and C-terminal pp65 protein (pp65 N&C) and N- and C-terminal pp65 protein fused with Tat (Tat/pp65 N&C) was produced in E.coli system. Peripheral blood mononuclear cells were stimulated with dendritic cells (DCs) pulsed with pp65 N&C or Tat/pp65 N&C protein and immune responses induced was examined using IFN-${\gamma}$ ELISPOT assay, cytotoxicity assay and tetramer staining. Results: DCs pulsed with Tat/pp65N&C protein could induce higher T-cell responses in vitro compared with pp65N&C. Moreover, the DCs pulsed with Tat/pp65 N&C could stimulate both of $CD8^+$ and $CD4^+$ T-cell responses. The T cells induced by DCs pulsed with Tat/pp65 N&C showed higher cytotoxicity than that of pp65-pulsed DCs against autologous lymphoblastoid B-cell line (LCL) expressing the HCMV-pp65 antigen. Conclusion: Our results suggest that DCs pulsed with Tat/pp65 N&C protein effectively induced pp65-specific CTL in vitro. Tat fusion recombinant protein may be useful for the development of adoptive T-cell immunotherapy and DC-based vaccines.

A Novel WV-TN with Wide Viewing Angle and Fast Response Time for Multi-Functional Monitor

  • Jeong, J.K.;Lee, D.J.;Jung, T.B.;Ko, T.W.;Choi, H.C.;Lee, S.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.294-296
    • /
    • 2005
  • We developed new WV-TN panel which has 170/170 viewing angle and 8ms response time. This viewing characteristics almost catch up with those of VA. To extend the viewing angle we optimized the cell design and LC parameters. This new technology strongly increase the demand of TN monitors especially for the monitor market larger than 19"

  • PDF

갈색거저리 유충 추출물의 항산화 활성 및 모발 성장 촉진 효과 (The Antioxidant Activities and Hair-growth Promotion Effects of Tenebrio molitor Larvae Extracts (TMEs))

  • 백민희;서민철;김미애;윤은영;황재삼
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1269-1275
    • /
    • 2017
  • 최근 들어 곤충을 식품 및 바이오 소재로 이용한 연구가 활발히 진행되고 있다. 그러나 곤충을 이용한 모발 성장 효과에 대한 연구는 아직 미흡한 실정이다. 따라서 본 연구에서는 탈모 예방 및 모발 성장 효과를 가진 새로운 천연물 소재 개발을 위해 갈색거저리 유충 추출물의 항산화 활성 및 모발 성장 촉진 효과를 연구하였다. 갈색거저리 유충 추출물의 항산화 활성 평가를 위해서 DPPH 라디칼 및 아질산염 소거능을 측정하였다. 모발 성장촉진 효과를 측정하기 위해서는 인간 모유두세포(human dermal papilla cell)와 섬유아세포(fibroblast, NIH3T3 cell)를 이용하였으며 MTS assay를 통해 세포생존율 및 세포증식률을 측정하였다. 모유두세포에서 dihydrotesteone (DHT)에 의한 세포사 억제 효과를 확인하였으며, 섬유아세포에서는 tolbutamide (TBM)의 potassium channel blocker 역할에 의한 세포사 억제 효과를 확인하였다. DPPH radical 및 아질산염 소거능 측정 결과 갈색거저리 유충 추출물은 항산화 역할이 뛰어난 것으로 보고된 블루베리와 유사하거나 높은 정도의 항산화능을 가지는 것으로 확인되었다. In vitro 상에서 갈색거저리 유충 추출물을 48시간 동안 처리한 경우, 모유두세포와 섬유아세포의 세포증식을 218% 및 116%까지 증가시켰다. 또한, 모유두세포에서 DHT 처리에 의한 세포사가 갈색거저리 유충 추출물에 의해 억제되는 것을 확인하였으며, 섬유아세포에서는 potassium channel blocker인 TBM에 의해 세포생존율이 감소하였으나 갈색거저리 유충 추출물 처리 시 세포생존율이 정상군과 비슷한 정도로 회복되는 것을 확인하였다. 이상의 결과로부터 갈색거저리 유충 추출물을 이용한 모발성장 및 탈모방지 기능성 소재 개발 가능성을 확인하였다.

자궁내막세포막의 공배양이 돼지 체외수정란의 초기발달에 미치는 영향 (Effect of Co-culture with Porcine Endometrial Cell Monolayers on the Development of In Vitro Produced Porcine Zygotes)

  • 한만희;박병권;박창식;이규승
    • 한국수정란이식학회지
    • /
    • 제11권3호
    • /
    • pp.217-223
    • /
    • 1996
  • This study was conducted to investigate the effects of co-culture for the development rate to morula /blastocyst stages of early porcine embryos, derived from oocytes matured and fertilized in vitro, with porcine endometrial cell monolayers(PEM) in the two different media, respectively. The rates of embryos developed to 2-, 4-, 8~16-cell and morula /blastocyst stage were 49.6, 40.5, 28.2 and 15.3% in Ham's F-10 with PEM, and 55.3, 45.9, 32.7, and 17.6% in TCM-HEPES with PEM, respectively. The above development rates to morula /blastocyst stages were significantly higher than those of the embryos cultured in the Ham's F-10 and TGM-HEPES without PEM(P<0.05). The in vitro development rates to the morula /blastocyst stage of 1-cell embryos cultured in Ham's F-10 and TCM-HEPES without PEM were 0~1.2%. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. As shown in the above results, the co-culture of in vitro produced porcine embryos with PEM in the two different media enhanced the development of fertilized eggs to morula /blastocyst stages in vitro. However, we didn't find out any differences for the in vitro development to morula /blastocyst stages between Ham's F-10 and TcM-HEPES media.

  • PDF

The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease

  • Chan-Su Park;Nilabh Shastri
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.13.1-13.14
    • /
    • 2022
  • Chronic inflammation plays a critical role in the development of obesity-associated metabolic disorders such as insulin resistance. Obesity alters the microenvironment of adipose tissue and the intestines from anti-inflammatory to pro-inflammatory, which promotes low grade systemic inflammation and insulin resistance in obese mice. Various T cell subsets either help maintain metabolic homeostasis in healthy states or contribute to obesity-associated metabolic syndromes. In this review, we will discuss the T cell subsets that reside in adipose tissue and intestines and their role in the development of obesity-induced systemic inflammation.