• 제목/요약/키워드: Systems engineering

검색결과 44,573건 처리시간 0.063초

대형 용해로의 외부 환경변수를 통제하기 위한 주변 환경관리의 활용 (Using Ambient Control to Prevent External Disturbances in Large-scale Furnace)

  • 조진형;장성호;이세재;장도수;서정열;오현승
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.92-96
    • /
    • 2006
  • Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and(air) pressure. In this study, first, we show that the process of such a huge furnace, which requires the steady maintenance of high temperature, is badly affected by the ambient temperature of surrounding air. Second, an alternative process which not only maintains the relatively constant temperature dispersion around the furnace, but is also economical will be proposed. We calculate the necessary volume of air inflow in the appendix.

Design Requirements in Software and Engineering Systems

  • Eleiche, A.M.;Ahmad, I.;Elish, M.O.
    • Industrial Engineering and Management Systems
    • /
    • 제11권1호
    • /
    • pp.70-81
    • /
    • 2012
  • The subject of "Design Requirements" (DR) is central to the design of software and engineering systems. The main reason for this is that quality aspects are usually closely tied to requirements, among other things. In this review paper, we consider how the subject of requirements is being managed in these two seemingly different design disciplines. Two important aspects are covered, namely: (a) requirements development, describing various activities leading to requirements documentation, and (b) requirements change management, describing various activities needed for the proper treatment of the inevitable changes in requirements. Similarities and differences on how these two aspects are handled in software and engineering systems are highlighted. It is concluded from this literature survey that the management of software requirements is quite coherent and well established as a science. On the other hand, management of engineering systems requirements suffer from being unstructured, in particular when requirements changes are involved. Important gaps and future important research areas are identified.

A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario

  • de Sousa, J. Ricardo Tavares;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제15권1호
    • /
    • pp.51-59
    • /
    • 2019
  • After Fukushima Dai-ichi NPP accident, the need for implementation of diverse and flexible coping strategies (FLEX) became evident. However, to ensure the effectiveness of the safety strategy, it is essential to quantify the uncertainties associated with the station blackout (SBO) scenario as well as the operator actions. In this paper, a systems engineering approach for uncertainty analysis (UA) of a SBO scenario in advanced pressurized water reactor is performed. MARS-KS is used as a best estimate thermal-hydraulic code and is loosely-coupled with Dakota software which is employed to develop the uncertainty quantification framework. Furthermore, the systems engineering approach is adopted to identify the requirements, functions and physical architecture, and to develop the verification and validation plan. For the preliminary analysis, 13 uncertainty parameters are propagated through the model to evaluate the stability and convergence of the framework. The developed framework will ultimately be used to quantify the aleatory and epistemic uncertainties associated with an extended SBO accident scenario and assess the coping capability of APR1400 and the effectiveness of the implemented FLEX strategies.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

Modulation Recognition of MIMO Systems Based on Dimensional Interactive Lightweight Network

  • Aer, Sileng;Zhang, Xiaolin;Wang, Zhenduo;Wang, Kailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3458-3478
    • /
    • 2022
  • Automatic modulation recognition is the core algorithm in the field of modulation classification in communication systems. Our investigations show that deep learning (DL) based modulation recognition techniques have achieved effective progress for multiple-input multiple-output (MIMO) systems. However, network complexity is always an additional burden for high-accuracy classifications, which makes it impractical. Therefore, in this paper, we propose a low-complexity dimensional interactive lightweight network (DilNet) for MIMO systems. Specifically, the signals received by different antennas are cooperatively input into the network, and the network calculation amount is reduced through the depth-wise separable convolution. A two-dimensional interactive attention (TDIA) module is designed to extract interactive information of different dimensions, and improve the effectiveness of the cooperation features. In addition, the TDIA module ensures low complexity through compressing the convolution dimension, and the computational burden after inserting TDIA is also acceptable. Finally, the network is trained with a penalized statistical entropy loss function. Simulation results show that compared to existing modulation recognition methods, the proposed DilNet dramatically reduces the model complexity. The dimensional interactive lightweight network trained by penalized statistical entropy also performs better for recognition accuracy in MIMO systems.

Suspensions and polymers - Common links in rheology

  • Harrison, G.;Franks, G.V.;Tirtaatmadja, V.;Boger, D.V.
    • Korea-Australia Rheology Journal
    • /
    • 제11권3호
    • /
    • pp.197-218
    • /
    • 1999
  • Rheological techniques are frequently used to characterize particulate suspensions and polymer systems. Experimental data frequently show that similar trends and characteristics are found in both systems. Using common examples and illustrations of the rheological behaviour, we attempt to bring together these separate fields and investigate the common links in the different systems. In many cases the similar rheological behaviour observed in these different systems can be related to the same basic physical principles.

  • PDF