• 제목/요약/키워드: Systems Modeling Language

검색결과 285건 처리시간 0.023초

Crunchbase를 바탕으로 한 Generative AI 영향 분석: ChatGPT 등장 전·후를 중심으로 (Analysis of the Impact of Generative AI based on Crunchbase: Before and After the Emergence of ChatGPT)

  • 김나윤;금영정
    • 벤처창업연구
    • /
    • 제19권3호
    • /
    • pp.53-68
    • /
    • 2024
  • Generative AI는 전 세계적으로 많은 관심을 받고 있으며, 이를 비즈니스 환경에서 효과적으로 활용하기 위한 방안이 모색되고 있다. 특히 OpenAI사에서 개발한 Large Language Model인 GPT-3.5 모델을 적용한 ChatGPT 서비스의 대중 공개 이후 더욱 주목받으며 전반적인 산업 분야에 큰 영향을 미치고 있다. 이 연구는 Generative AI, 특히 그 중에서도 OpenAI사의 GPT-3.5 모델을 적용한 ChatGPT의 등장에 초점을 맞춰 스타트업 업계에 미치는 영향을 조사하고 등장 이전과 이후에 일어난 변화를 비교하였다. 본 연구는 스타트업 업계에서 Generative AI가 어떻게 활용되고 있는지를 상세히 조사하고 ChatGPT의 등장이 업계에 미친 영향을 분석함으로써 비즈니스 환경에서 Generative AI의 실제 적용과 영향력을 밝히는 것을 목표로 한다. 이를 위해 ChatGPT 발표 전후에 등장한 Generative AI 관련 스타트업의 기업 정보를 수집하여 산업군, 사업 내용, 투자 정보 등의 변화를 분석하였다. 키워드 분석, 토픽 모델링, 네트워크 분석을 통해 스타트업 업계의 동향과 Generative AI의 도입이 스타트업 업계에 어떤 혁신을 가져왔는지 파악하였다. 연구 결과, ChatGPT의 등장 이후 Generative AI 관련 스타트업의 창업이 증가한 것을 알 수 있었으며 특히 Generative AI 관련 스타트업의 자금 조달 총액과 평균 금액이 크게 증가한 것을 확인할 수 있었다. 또한, 다양한 산업군에서 Generative AI 기술을 적용하고자 하는 시도를 보이고 이를 활용한 기업용 애플리케이션, SaaS 등 서비스와 제품의 개발이 활발해지며 새로운 비즈니스 모델의 등장에 영향을 미치고 있음을 확인하였다. 본 연구 결과를 통해 Generative AI가 스타트업 업계에 미치는 영향을 확인하였으며, 이러한 혁신적인 신기술의 등장이 비즈니스 생태계에 어떠한 변화를 가져다 줄 수 있는 지 이해하는데 이바지할 수 있다.

  • PDF

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

가정간호사업 운용을 위한 정보전달체계 개발 I (가정간호 데이터베이스 구축과 뇌졸중 환자의 가정간호 전산개발) (Development of the Information Delivery System for the Home Nursing Service)

  • 박정호;김매자;홍경자;한경자;박성애;윤순녕;이인숙;조현;방경숙
    • 가정∙방문간호학회지
    • /
    • 제4권
    • /
    • pp.5-22
    • /
    • 1997
  • The purpose of the study was to development an information delivery system for the home nursing service, to demonstrate and to evaluate the efficiency of it. The period of research conduct was from September 1996 to August 31, 1997. At the 1st stage to achieve the purpose, Firstly Assessment tool for the patients with cerebral vascular disease who have the first priority of HNS among the patients with various health problems at home was developed through literature review. Secondly, after identification of patient nursing problem by the home care nurse with the assessment tool, the patient's classification system developed by Park (1988) that was 128 nursing activities under 6 categories was used to identify the home care nurse's activities of the patient with CAV at home. The research team had several workshops with 5 clinical nurse experts to refine it. At last 110 nursing activities under 11 categories for the patients with CVA were derived. At the second stage, algorithms were developed to connect 110 nursing activities with the patient nursing problems identified by assessment tool. The computerizing process of the algorithms is as follows: These algorithms are realized with the computer program by use of the software engineering technique. The development is made by the prototyping method, which is the requirement analysis of the software specifications. The basic features of the usability, compatibility, adaptability and maintainability are taken into consideration. Particular emphasis is given to the efficient construction of the database. To enhance the database efficiency and to establish the structural cohesion, the data field is categorized with the weight of relevance to the particular disease. This approach permits the easy adaptability when numerous diseases are applied in the future. In paralleled with this, the expandability and maintainability is stressed through out the program development, which leads to the modular concept. However since the disease to be applied is increased in number as the project progress and since they are interrelated and coupled each other, the expand ability as well as maintainability should be considered with a big priority. Furthermore, since the system is to be synthesized with other medical systems in the future, these properties are very important. The prototype developed in this project is to be evaluated through the stage of system testing. There are various evaluation metrics such as cohesion, coupling and adaptability so on. But unfortunately, direct measurement of these metrics are very difficult, and accordingly, analytical and quantitative evaluations are almost impossible. Therefore, instead of the analytical evaluation, the experimental evaluation is to be applied through the test run by various users. This system testing will provide the viewpoint analysis of the user's level, and the detail and additional requirement specifications arising from user's real situation will be feedback into the system modeling. Also. the degree of freedom of the input and output will be improved, and the hardware limitation will be investigated. Upon the refining, the prototype system will be used as a design template. and will be used to develop the more extensive system. In detail. the relevant modules will be developed for the various diseases, and the module will be integrated by the macroscopic design process focusing on the inter modularity, generality of the database. and compatibility with other systems. The Home care Evaluation System is comprised of three main modules of : (1) General information on a patient, (2) General health status of a patient, and (3) Cerebrovascular disease patient. The general health status module has five sub modules of physical measurement, vitality, nursing, pharmaceutical description and emotional/cognition ability. The CVA patient module is divided into ten sub modules such as subjective sense, consciousness, memory and language pattern so on. The typical sub modules are described in appendix 3.

  • PDF

컴포넌트 유통환경을 위한 컴포넌트 메타데이타 레지스트리 구축 : C_MDR (A Construction of the C_MDR(Component_MetaData Registry) for the Environment of Exchanging the Component)

  • 송치양;임성빈;백두권;김철홍
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권6호
    • /
    • pp.614-629
    • /
    • 2001
  • 21세기 지식기반 사회로의 정착화와 글로벌 인터넷화 추진으로 소프트웨어는 대형화 및 복잡화 되어가고 있으며, 그 수요는 폭주하는 실정이다. 이에, 표준화된 컴포넌트의 개발 및 유통을 통한 재사용의 활성화가 최근 산업계와 학계에서 중요한 이슈로 부각되는 실정이다. 현재, 컴포넌트의 재사용을 위하여 해외 컴포넌트 판매 마켓에서는 자사별 판매하는 제품의 특성에 따라 정보를 제공하고 있으나, 상이하게 정보를 정의하고 있으며, 그 정보의 수준이 미약하며, 표준화되지 않은 메타정보를 제공하고 있다. 즉, 국제표준 ISO 11179에 기반한 컴포넌트 데이타 레지스트리의 구축이 이루어지고 있지 않다. 국내에서는 2001년도에 공용 컴포넌트의 출시를 추진하고 있다. 따라서, 개발된 컴포넌트의 정보 공유와 유통을 위한 지원도구로서 표준화된 컴포넌트의 메타정보를 서비스 해주는 시스템이 필요하다. 본 논문은 컴포넌트 재사용 활성화의 일환으로 체계적인 정보공유와 정보유통을 위하여, 제품화된 공용 컴포넌트에 대한 표준화된 메타정보의 등록 및 관리를 제공해주는 ISO 11179 표준에 근거한 컴포넌트 유통환경의 도구로서, 컴포넌트 메타데이타 레지스트리(C_MDR) 시스템을 제시한다. 이를 위해, 컴포넌트에 대한 메타정보의 명세 플랫폼을 제시하고, 이 플랫폼에 따라 메타정보를 정의하고, 또한 타 시스템과의 정보의 호환성 증진을 위해 XML을 이용해 표현한다. 그리고 시스템 디자인을 위해 3계층 아키텍쳐 표현방식을 적용하여 단순하고 이해성 있는 시각화 모델링을 제공한다. 시스템 구현은 웹 상의 인터넷을 통해 컴포넌트 메타정보를 서비스를 할 수 있도록 시스템을 구축하며, ASP 개발언어와 PC용 RDMS 오라클을 사용한다. 이로서, 제품화된 컴포넌트j에 대한 유통 메타정보의 표준화를 기할 수 있고, 재사용을 위한 유통지원도구로서 지원이 가능할 것이다.

  • PDF

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.