• Title/Summary/Keyword: Systems Design

Search Result 21,823, Processing Time 0.043 seconds

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

Structure Development of Systematic Conceptual Design Process for Designing Engineering Systems (공학 시스템 설계를 위한 체계적인 개념 설계 프로세스 구조 개발)

  • Park, Yong-Taek;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.86-94
    • /
    • 2007
  • The design process must be planned carefully and executed systematically in order to support designers who are faced with many engineering design problems. In particular, conceptual design stage is very important than other stages such as detailed design or manufacturing stage on designing engineering systems. When designers are faced contradictory situation in task, conceptual design usually requires inventive thinking which depends on their creativity. And in order to develop good concepts, it is necessary to resolve contradictory situations during conceptual design. This paper presents a structure of systematic conceptual design process for designing engineering systems. And we developed the automatic feeding screw device using the proposed design process structure.

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

On the design method of physical architecture based on the Design Structure Matrix (DSM) approach (물리적 아키텍처 설계에 대한 DSM 방법론 적용 사례 연구)

  • Choi, Sang Wook;Choi, Sang Taik;Jung, Yun Ho;Jang, Jae Deok
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Development of the system that has required performance is the most important figure and that is the key of project succeed. In order to perform that, systems engineering has come to the fore as a solution. In each step of system engineering process, particularly, requirement analysis and derivation, logical solution, architecture design step are known to affect many of the function and efficiency. Of these, this paper focus on architecture design. We introduce methodology for physical architecture design by applying DSM(Design Structure Matrix) methodology which is based on result of logical solution from MBSE methodology.

A Method of Design for Sequential Control Systems (시이퀀스 제어계통의 설계법)

  • Hwang, Chang-Sun
    • 전기의세계
    • /
    • v.18 no.6
    • /
    • pp.33-45
    • /
    • 1969
  • The purpose of this paper is design the most important part of sequential control systems, that is, command-treatment part, from the signal-transformation point of view. An orderly procedure is developed by which for sequential control systems the experimental design method can be reduced to the rational design method. Important in this procedure are: 1. To make total block diagram of sequential control systems by determining input and output signals of command-treatment part. 2. To partition over-all block diagram by observing each output signal. 3. To design concretely minimum block diagram by using the operational block diagram. By applying the method for partitioning the circuit to the design, the design method for sequential control systems is organized and done rationally without the aid of experiece.

  • PDF

Design Parameters of Small Hydro Power Sites for River Systems(I) (소수력발전입지의 수계별 설계변수 특성(I))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.86-91
    • /
    • 2010
  • The characteristics of hydrologic design parameters for small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow. And another model to predict hydrologic performance for SHP plants is established. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems. The load factor, however, have small difference compared with specific design flowrate and specific output for all river systems. Also, it was found that the models developed in this study can be used to predict the primary design specifications of SSHP plants effectively.

Web-based Collaboration Systems for Structural Design: A Review

  • Lim, Jinkang;Lee, Jaewook;Lee, Seunghye;Kim, Han Soo;Jung, Sungwon
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In a construction project, collaboration amongst the project participants is a critical factor for high-quality results and successful completion of the project. Owing to the advance of information technologies, web-based systems have become more common in the construction industry, but research and development has been made for only limited areas. For organized and systematic collaboration in various fields, collaboration systems have to be developed in a holistic manner based on diverse needs from the whole construction industry. This study aims to investigate the current status of web-based collaboration systems from structural engineers' perspectives and propose an improvement plan. For a systematic analysis of selected cases, we apply a classification of three developmental stages depending on interoperability and organizational levels: structural design and analysis, collaborative design, and integrated design management. Thereafter, the characteristics of each stage are extracted and comparatively analyzed. Lastly, three functional factors were proposed for the improvement of web-based collaboration systems for structural design.

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.

Design and optimization of steel trusses using genetic algorithms, parallel computing, and human-computer interaction

  • Agarwal, Pranab;Raich, Anne M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.325-337
    • /
    • 2006
  • A hybrid structural design and optimization methodology that combines the strengths of genetic algorithms, local search techniques, and parallel computing is developed to evolve optimal truss systems in this research effort. The primary objective that is met in evolving near-optimal or optimal structural systems using this approach is the capability of satisfying user-defined design criteria while minimizing the computational time required. The application of genetic algorithms to the design and optimization of truss systems supports conceptual design by facilitating the exploration of new design alternatives. In addition, final shape optimization of the evolved designs is supported through the refinement of member sizes using local search techniques for further improvement. The use of the hybrid approach, therefore, enhances the overall process of structural design. Parallel computing is implemented to reduce the total computation time required to obtain near-optimal designs. The support of human-computer interaction during layout optimization and local optimization is also discussed since it assists in evolving optimal truss systems that better satisfy a user's design requirements and design preferences.

Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems (엔진 마운트의 동특성 해석 및 최적설계 시스템)

  • 임홍재;성상준;이상범
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF