• Title/Summary/Keyword: System phase noise

Search Result 746, Processing Time 0.05 seconds

Analysis of Phase Noise Effects in OFDM Systems Using Transceiver Diversity (송수신 다이버시티를 적용한 다중 반송파 시스템에서의 위상잡음 영향 분석)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • In this paper, the phase noise effects of OFDM transceiver diversity systems were analyzed. Since OFDM communication system is very sensitive to phase noise, the system performance may degrade seriously due to the increase of subcarrier interferences and system noise. Therefore, the phase noise model was suggested and its distribution and power were varied to investigate the effects of phase noise on the system performance. The degree of the system performance degradation depends on the specific diversity structures of transceiver systems. Here, the performances of OFDM systems with two antennas transceiver diversity were analyzed and compared with that of systems with only transmission diversity and without diversity as the phase noise characteristics varied.

Phase Noise Spectrum Distribution Analysis for Next-generation VSAT Satellite System (차세대 VSAT 위성통신시스템의 위상잡음 스펙트럼 분포 해석)

  • Kim, Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1831-1836
    • /
    • 2016
  • Phase noise spectrum distributions of signal generators for next-generation VSAT satellite system based on DVB-RCS2 were analyzed in this paper. The forward link of VSAT system utilizes the APSK higher-order modulation methods based on the DVB-S2 ACM, the modulation methods of the return link utilizes the higher-order PSK and QAM based on the DVB-RCS2. In digital satellite system using the higher-order modulation techniques, the phase noise have an effect on transmission performance, the transmission performance is dominantly degraded by the phase noise of signal generators in the transmission system. The phase noise spectrum distribution of signal generators are analyzed by considering the ACM conditions that adopts the modulation techniques and data rates due to satellite transmission environment. The proper phase noise spectrum distribution for next-generation VSAT system based on DVB-RCS2 are proposed from the analyzed phase noise spectrum characteristics.

Prediction of Performance Loss Due to Phase Noise in Digital Satellite Communication System (디지털 위성통신시스템에서 위상 잡음으로 인한 성능 손실 예측)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Based on the alternating series expansion of error probability function due to phase noise in PSK systems, the performance evaluations for Tikhonov and Gaussian probability density functions were performed in this paper. The range of the signal-to-noise ratio of recovered carrier signal which provides the same dependency between the error performances by Tikhonov function and Gaussian function was analyzed via loss evaluation due to phase noise. The phase noise with 1/f$^2$ characteristic was generated based on the relationship of the phase noise spectral density and the modulation index for frequency modulation signal. Using the generated phase noise as the input signal for digital satellite communication receiver, the performance losses due to the phase noise were measured and evaluated with the analyzed performance characteristics.

The Performance Comparison of Active Noise Controller With Phase Difference (위상차에 따른 소음 제거기의 성능 비교)

  • 최창권;조병모
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.695-698
    • /
    • 1999
  • Passive noise reduction is a classical approach to attenuate industrial noise. But Active noise cancellation has several advantages over the passive noise cancellation. Such a system offers a better low frequency performance with a smaller and lighter system. This paper presents an active closed loop control system which consists of an controller for inverting and compensating the phase delay, an microphone for picking up the external noise, and loudspeaker for radiating the acoustic anti-phase signal to reduce external noise. The noise in the phase delay covered from 80$^{\circ}$ to 270$^{\circ}$ tends to be reduced. The degree of noise cancellation obtainable with this system reaches value about 17㏈.

  • PDF

The Phase Noise prediction and the third PLL systems on 1/f Noise Modeling of Frequency Synthesizer (주파수합성기의 Phase Noise 예측 및 3차 PLL 시스템에서의 1/f Noise Modeling)

  • 조형래;성태경;김형도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.653-660
    • /
    • 2001
  • In this paper, we designed 2303.15MHz frequency synthesizer for the purpose of the phase noise prediction. For the modeling of phase noise generated in the designed system through introducing the noise-modeling method suggested by Lascari we analyzed a variation of phase noise as according as that of offset frequency. Especially, for the third-order system of the PLL among some kinds of phase noise generated from VCO we analyzed the aspect of 1/f-noise appearing troubles in the low frequency band. Since it is difficult to analyze mathematically 1/f-noise in the third-order system of the PLL, introducing the concept of pseudo-damping factor has made an ease of the access of the 1/f-noise variance. we showed a numerical formula of 1/f-noise variance in the third-order system of the PLL which is compared with that of 1/f-noise variance in the second-order system of the PLL. As a result, In case of txco we found the reduce rapidly along the offset frequency after passed through that phase-noise was -160dBc/Hz before passed through a loop at 10kHz offset frequency and -162.6705dBc/kHz after passed through the loop, -180dBc/Hz at 100kHz offset frequency and -560dBc/kHz after passed through the loop. We can notice that the variance of third-order system more occurs (or the variance of second-order system in connection with noise bandwidth and variance factor of second-order and third-order system.

  • PDF

Phase Noise Prediction of Phase-Locked Loop frequency Synthesizer for Satellite Communication System (위성통신 시스템용 위상 고정 루프 주파수 합성기의 위상 잡음 예측 모델)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.777-786
    • /
    • 2003
  • The phase noise characteristics of the phase-locked loop frequency synthesizer were predicted based on the analysis for phase noise contribution of noise sources. The proposed phase noise model in this paper more accurately predicts the phase noise spectrum of frequency synthesizer. To accurately model the phase noise contribution of noise sources in frequency synthesizer, the phase noise sources were analyzed via modeling of the frequency divider and phase noise components using Leeson model for reference signal source and VCO. The phase noise transfer functions to VCO from noise sources were analyzed by superposition theory and linear operation of phase-locked loop. To evaluate the phase noise prediction model, the frequency synthesizers were fabricated and were evaluated by measured data and prediction data.

Speech Processing System Using a Noise Reduction Neural Network Based on FFT Spectrums

  • Choi, Jae-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.

Analysis of Phase Noise and HPA Non-linearity in the OFDM/FH Communication System (OFDM/FH 시스템에서 위상잡음과 비선형 HPA의 특성분석)

  • Li, Ying-Shan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.649-659
    • /
    • 2003
  • OFDM/FH communication system Is widely used in the wireless communication for the large capacity and high-speed data transmission. However, phase noise and PAPR (peak-to-average power ratio) are the serious problems causing performance impairment. In this paper, PLL (phase locked loop) frequency synthesizer with high switching speed is used for the phase noise model. SSPA and TWTA are considered for the nonlinear HPA model. Under these conditions and by approximating $e^{j{\phi}[m]}$ into $1 + j{\phi}[m]-\frac{1}{2}{\phi}^2[m]$ for the phase noise nonlinear approximation, SINR (signal-to-interference-noise-ratio) with nonlinear HPA and phase noise is derived in the OFDM/FH system. The bit error probabilities (BER) are found by computer simulation method and semi-analytical method. The simulation results closely match with the semi-analytical results.

  • PDF

Phase Noise Self-Cancellation Scheme Based on Orthogonal Polarization for OFDM System

  • Nie, Yao;Feng, Chunyan;Liu, Fangfang;Guo, Caili;Zhao, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4334-4356
    • /
    • 2017
  • In orthogonal frequency-division multiplexing (OFDM) systems, phase noise introduced by the local oscillators can cause bit error rate (BER) performance degradation. To solve the phase noise problem, a novel orthogonal-polarization-based phase noise self-cancellation (OP-PNSC) scheme is proposed. First, the efficiency of canceling the phase noise of the OP-PNSC scheme in the AWGN channel is investigated. Then, the OP-PNSC scheme in the polarization-dependent loss (PDL) channel is investigated due to power imbalance caused by PDL, and a PDL pre-compensated OP-PNSC (PPC -OP-PNSC) scheme is proposed to mitigate the power imbalance caused by PDL. In addition, the performance of the PPC-OP-PNSC scheme is investigated, where the signal-to-interference-plus-noise ratio (SINR) and spectral efficiency (SE) performances are analyzed. Finally, a comparison between the OP-PNSC and polarization diversity scheme is discussed. The numerical results show that the BER and SINR performances of the OP-PNSC scheme outperform the case with the phase noise compensation and phase noise self-cancellation scheme.

Noise Reduction of Anti-phase Shifting to Maximum Amplitude Response in a Helmet (최대 진폭 응답으로 역위상을 천이시킨 헬멧에서의 소음감쇠 기법)

  • 조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.13-20
    • /
    • 2001
  • The active noise cancellation system offers a better low frequency performance with a smaller and lighter system compared to a passive one. This paper presents an active noise control system capable of reducing the noise in a helmet after attenuating the external noise using the helmet as the passive noise reduction system, which consists of a controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic anti-phase signal to reduce the external noise. In this paper, external noise can be reduced by noise controller by compensating the phase difference to be 180°in the frequency of maximun value in the amplitude response. The noise of the phase delay covered from 50°to 310°was reduced in this system and it is possible to obtain a noise reduction of up to approximately 20 dB at the ears in the enclosure.

  • PDF