• Title/Summary/Keyword: System matrix

Search Result 4,714, Processing Time 0.03 seconds

Analysis of Torsional Natural Viibration Characteristics of Rotors (회전체의 비틀림 고유진동 해석)

  • 전오성;김정태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1351-1362
    • /
    • 1995
  • A method to estimate the torsional critical speed for practical rotors has been developed in this study. First, the rotor with a uniform shaft segment is modeled for undamped torsional motion analysis, while satisfying all the boundary conditions. This eventually generates governing equations for the torsional critical speeds of the system. The set of governing equations has the form of a sparse and banded matrix. The elements of banded matrix can be arranged in partitions, which correspond to the specific boundary of the rotor. This permits an automatic generation of the system matrix using a computer. In order to calculate the determinant generated by the simultaneous equations, which leads to the torsional critical speed, a recurring numerical algorithm for a (3*4) sub-matrix has been used. This numerical algorithm practically examines successive (3*4) sub-matrix, one at a time, instead of treating a huge matrix. The output of the program provides the mode shapes with continuous curves. The method has been implemented to three rotors given as examples : a simple rotor, Prohl's rotor, and Macmillan rotor.

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.

Fault-Tolerant Strategy to Control a Reverse Matrix Converter for Open-Switch Faults in the Rectifier Stage

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • Reverse matrix converters, which can step up voltages, are suitable for applications with source voltages that are lower than load voltages, such as generator systems. Reverse matrix converter topologies are advantageous because they do not require additional components to conventional matrix converters. In this paper, a detection method and a post-fault modulation strategy to operate a converter as close as possible to its desired normal operation under the open-switch fault condition in the rectifier stage are proposed. An open-switch fault in the rectifier stage of a reverse matrix converter causes current distortions and voltage ripples in the system. Therefore, fault-tolerant control for open-switch faults is required to improve the reliability of a system. The proposed strategy determines the appropriate switching stages from among the remaining healthy switches of the converter. This is done based on reference currents or voltages. The performance of the proposed strategy is experimentally verified.

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

CONVERGENCE OF THE GENERALIZED MULTISPLITTING AND TWO-STAGE MULTISPLITTING METHODS

  • Oh, Se-Young;Yun, Jae-Heon;Han, Yu-Du
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.501-510
    • /
    • 2008
  • In this paper, we first provide a convergence result of the generalized two-stage splitting method for solving a linear system whose coefficient matrix is an H-matrix, and then we provide convergence results of the generalized multisplitting and two-stage multisplitting methods for both a monotone matrix and an H-matrix.

  • PDF

CONVERGENCE OF MULTISPLITTING METHOD FOR A SYMMETRIC POSITIVE DEFINITE MATRIX

  • YUN JAE HEON;OH SEYOUNG;KIM EUN HEUI
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.59-72
    • /
    • 2005
  • We study convergence of symmetric multisplitting method associated with many different multisplittings for solving a linear system whose coefficient matrix is a symmetric positive definite matrix which is not an H-matrix.

A Combustion Instability Analysis of a Model Gas Turbine Combustor by the Transfer Matrix Method

  • Cha, Dong-Jin;Kim, Jay-H.;Joo, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2946-2951
    • /
    • 2008
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach.

  • PDF

Development of PMSG wind power system model using wind turbine simulator and matrix converter (풍력터빈시뮬레이터와 매트릭스 컨버터를 이용한 PMSG 풍력발전 시스템 모델 개발)

  • Yun, Dong-Jin;Han, Byung-Moon;Li, Yu-Long;Cha, Han-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.45-47
    • /
    • 2008
  • This paper describes development of PMSG wind power system model using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The simulation results confirm that matrix converter can be effectively applied for the PMSG system.

  • PDF

Development of the KnowledgeMatrix as an Informetric Analysis System (계량정보분석시스템으로서의 KnowledgeMatrix 개발)

  • Lee, Bang-Rae;Yeo, Woon-Dong;Lee, June-Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • Application areas of Knowledge Discovery in Database(KDD) have been expanded to many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not moderate, korean language processing is impossible, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information(KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. KnowledgeMatrix's main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. Matrix generation unit help extract information items which will be analyzed, and calculate occurrence, co-occurrence, proximity of the items. Cluster analysis unit enable matrix data to be clustered by hierarchical or non-hierarchical clustering methods and present tree-type structure of clustered data. Visualization unit offer various methods such as chart, FDP, strategic diagram and PFNet. Data pre-processing unit consists of data import editor, string editor, thesaurus editor, grouping method, field-refining methods and sub-dataset generation methods. KnowledgeMatrix show better performances and offer more various functions than extant systems.