• Title/Summary/Keyword: System failures

Search Result 1,131, Processing Time 0.027 seconds

Design and Implementation of a Backup System for Object based Storage Systems (객체기반 저장시스템을 위한 백업시스템 설계 및 구현)

  • Yun, Jong-Hyeon;Lee, Seok-Jae;Jang, Su-Min;Yoo, Jae-Soo;Kim, Hong-Yeon;Kim, Jun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Recently, the object based storage devices systems(OSDs) have been actively researched. They are different from existing block based storage systems(BSDs) in terms of the storage unit. The storage unit of the OSDs is an object that includes the access methods, the attributes of data, the security information, and so on. The object has no size limit and no influence on the internal storage structures. Therefore, the OSDs improve the I/O throughput and the scalability. But the backup systems for the OSDs still use the existing backup techniques for the BSDs. As a result, they need much backup time and do not utilize the characteristics of the OSDs. In this paper, we design and implement a new object based backup system that utilizes the features of the OSDs. Our backup system significantly improves the backup time over existing backup systems because the raw objects are directly transferred to the backup devices in our system. It also restores the backup data much faster than the existing systems when system failures occur. In addition, it supports various types of backup and restore requests.

A Remote Applications Monitoring System using JINI (JINI 기반 원격 응용 모니터링 시스템)

  • 임성훈;송무찬;김정선
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.221-230
    • /
    • 2004
  • In general, remote monitoring systems monitor the status of distributed hosts and/or applications in real-time for diverse managerial purposes. However, most of the extant systems have a few undesirable problems. First of all, they are platform-dependent and are not resilient to network and/or host failures. Moreover, they normally focus on the resource usage trends in monitored hosts, rather than on the status change of the applications running on them. We strongly believe that the latter has more direct and profound effect on the resource usage patterns on each host. In this paper, we present the design and implementation of the Remote Applications Monitoring System (RAMS) that enables us to effectively manage distributed applications through a real-time monitoring of their respective resource usages. The RAMS is a centralized system that consists of many distributed agents and a single centralized manager. An agent on each host is in charge of collecting and reporting the status of local applications. The manager handles agent registration and provides a central access point to the selection and monitoring of distributed applications. The salient features of the system include robustness and portability The adoption of JINI greatly facilitates an automatic recovery from partial network failure and host failure.

A Burn-in Test System with Dynamic Bone Allocation (동적 존 할당이 가능한 번인 시험 시스템)

  • Oh, Sam-Kweon;Shin, Joong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • Bum-in test is one for eliminating semiconductor devices that are subject to early failures and other operational problems; it is usually carried out on the devices by imposing severe test conditions such as elevated voltages, temperatures, and time. In order for such a test to be performed, each burn-in board having devices to be tested, needs to be inserted into a corresponding slot. A set of such slots is called a zone. The slots comprising a zone can only have the burn-in boards with the devices of the same type. In order to test many different types of semiconductor devices, it is desirable to build a burn-in test system to have as many zones as possible. A zone controller controlling a zone, is a device that performs a burn-in test and collects test results. In case of existing systems, each zone controller takes care of a zone that consists of a fixed number of slots. Since a zone controller is, in most cases, embedded into a workstation that controls the overall testing process, adding new zone controllers is restricted by the spaces for them. As a way to solve or alleviate these problems, a dynamic zone system in which the number of slots in a zone can be dynamically allocated, is presented. This system maximizes the efficiency of system utilization, by altering the number of slots and hence minimizing the idle slots of a zone. In addition, all the test operations being performed must be aborted for maintenance in existing systems. In dynamic zone systems, however, a separate and independent maintenance is allowed for each slot, as long as the main power supply system has no problem.

A Study on Communication Safety and Evaluation Tool in Railway Communication System (열차제어시스템 통신 안정성 및 평가 도구 연구)

  • Kim, Sung-Un;Seo, Sang-Bo;Song, Seung-Mi;Jo, Chan-Hyo;Hwang, Jong-Gyu;Jo, Hyun-Jeong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.349-356
    • /
    • 2008
  • Put Safety-critical systems related to the railway communications are currently undergoing changes. Mechanical and electro-mechanical devices are being replaced by programmable electronics that are often controlled remotely via communication networks. Therefore designers and operators now not only have to contend with component failures and user errors, but also with the possibility that malicious entities are seeking to disrupt the services provided by theirs systems. Recognizing the safety-critical nature of the types of communications required in rail control operations, the communications infrastructure will be required to meet a number of safety requirements such as system faults, user errors and the robustness in the presence of malicious attackers who are willing to take determined action to interfere in the correct operation of a system. This paper discusses the safety strategies employed in the railway communications and proposes a security mechanism for Korean railway communication system. We present the developed communication safety evaluation tool based on the proposed security mechanism and also evaluate its protecting capability against the threats of masquerading, eavesdropping, and unauthorized message manipulation.

Study on Development of HDD Integrity Verification System using FirmOS (FirmOS를 이용한 HDD 무결성 검사 시스템 개발에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung;Shin, Jae-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • In radio astronomy, high-capacity HDDs are being used to save huge amounts of HDDs in order to record the observational data. For VLBI observations, observational speeds increase and huge amounts of observational data must be stored as they expand to broadband. As the HDD is frequently used, the number of failures occurred, and then it takes a lot of time to recover it. In addition, if a failed HDD is continuously used, observational data loss occurs. And it costs a lot of money to buy a new HDD. In this study, we developed the integrity verification system of the Serial ATA HDD using FirmOS. The FirmOS is an OS that has been developed to function exclusively for specific purposes on a system having a general server board and CPU. The developed system performs the process of writing and reading specific patterns of data in a physical area of the SATA HDD based on a FirmOS. In addition, we introduced a method to investigate the integrity of HDD integrity by comparing it with the stored pattern data from the HDD controller. Using the developed system, it was easy to determine whether the disk pack used in VLBI observations has error or not, and it is very useful to improve the observation efficiency. This paper introduces the detail for the design, configuration, testing, etc. of the SATA HDD integrity verification system developed.

  • PDF

Issues and Debugging Methodology for Porting TinyOS on a Small Network Embedded System (소형 네트워크 임베디드 시스템에 TinyOS 이식 과정에서의 이슈 및 디버깅 기법)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.94-105
    • /
    • 2008
  • Numerous platforms have been developed for ZigBee-based network embedded systems. Also, operating systems like TinyOS have been installed to facilitate efficient implementation of wireless sensor network applications which collect data, and/or execute commands. First of all, porting an operating system on a new platform may need invention of a substitute for a required but unsupported hardware component. This paper presents a multiplexed virtual system timer for a platform without a counter comparator which we have contrived to emulate by using an extra counter. Such porting also injects unexpected faults which cause a variety of painful failures. Unfortunately, TinyOS requires to handle a lot of asynchronous hardware interrupts which are hard to trace during debugging. Besides, simulators are not available for a new platform since the models of hardware on the platform are not usually developed, yet. We propose novel instrumentation techniques which can be used to effectively trace the bugs in such lack of debugging environment. These techniques are used to identify and fix a great deal of nasty issues in porting TinyOS 2.0 on MG2400 and MG2455 platforms made by RadioPulse Inc.

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

Evaluation and Determination of System Design Alternatives Utilizing a SysML-Based M&S Method for Achieving Functional Safety (SysML 기반 모델링 및 시뮬레이션 기법을 통한 기능안전 설계 대안들의 평가 및 결정 방법)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.574-582
    • /
    • 2018
  • In systems such as railways, automobiles, and airplanes, system malfunctions may lead to accidents, which often cause serious personal injury and economic loss. In previous studies, failure analysis has been performed, and safety measures derived using the component level information to reduce damage when a failure occurs. However, in functional safety concept, a focus is placed on lowering the frequency of occurrence of failures by performing risks analysis, setting up safety goals, and designing safety functions. Therefore, it is necessary to study how to determine the required safety function that can reduce the failure frequency to the acceptable level. To achieve this, we first studied a failure modeling method using SysML. It was then presented how several alternatives can be assessed to determine the desired safety function by simulating the generated SysML failure models and calculating the ability to reduce the failure frequency. A case study of a railway signaling system was done, demonstrating the effectiveness of the approach. We assessed whether the safety objectives were met for the alternative design of the railway signaling system through M & S. The results can be useful in that it can be applied from the early design phase and allow to choose the appropriate safety function that satisfies safety objectives among various design alternatives.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Garbage Collection Protocol of Fault Tolerance Information in Multi-agent Environments (멀티에이전트 환경에서 결함 포용 정보의 쓰레기 처리 기법)

  • 이대원;정광식;이화민;신상철;이영준;유헌창;이원규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.204-212
    • /
    • 2004
  • Existing distributed systems have higher probability of failures occurrence than stand-alone system, so many fault tolerant techniques have been developed. Because of insufficient storage resulting from the increased fault tolerance information stored, the performance of system has been degraded. To avoid performance degradation, it needs delete useless fault tolerance information. In this paper, we propose a garbage collection algorithm for fault tolerance information. And we define and design the garbage collection agent for garbage collection of fault tolerance information, the information agent for management of fault tolerant data, and the facilitator agent for communication between agents. Also, we propose the garbage collection algorithm using the garbage collection agent. For rollback recovery, we use independent checkpointing protocol and sender based pessimistic message logging protocol. In our proposed garbage collection algorithm, the garbage collection, information, and facilitator agent is created with process, and the information agent constructs domain knowledge with its checkpoints and non-determistic events. And the garbage collection agent decides garbage collection time, and it deletes useless fault tolerance information in cooperation with the information and facilitator agent. For propriety of proposed garbage collection technique using agents, we compare domain knowledge of system that performs garbage collection after rollback recovery and domain knowledge of system that doesn't perform garbage collection.