• 제목/요약/키워드: System Rigidity

검색결과 345건 처리시간 0.026초

건설공사 사회보험료 사후정산제도의 문제점 및 개선방안 - 국민연금 및 국민건강보험을 중심으로 - (An Improvement Plan of Ex-post Settling up System on the Social Insurance of Construction Project - Focused on the National Pension and National Health Insurance -)

  • 오치돈
    • 대한건축학회논문집:구조계
    • /
    • 제35권1호
    • /
    • pp.29-36
    • /
    • 2019
  • In the past, social insurance premiums, such as national pension and national health insurance, is contained within the costs of construction projects, have been lowered due to price competition of companies participating in the bidding. The government is implementing the "Ex-post settlement system" to improve the problem. Therefore, the purpose of this study is to examine the concept of an Ex-post settlement system and background of its introduction and to identify problems in the management of the system. The problems of the Ex-post settlement system are: 1) avoiding the participation of construction workers, 2) the rigidity of the insurance premium settlement method in construction field, and 3) the cause of direct construction cost reduction. The ways to improve these problems are: 1) excluding social insurance premiums from construction project cost, 2) securing flexibility of the settlement method of insurance premiums in construction field, and 3) expanding the scope of persons eligible to participate in social insurance.

CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성 (Torsional Strength of CFRP Material for Application of Ship Shaft System)

  • 김민규;신익기;김선진;박대겸;서정관
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

A study on wafer processing using backgrinding system

  • Seung-Yub Baek
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.9-16
    • /
    • 2024
  • Recently, there has been extensive research conducted on the miniaturization of semiconductors and the improvement of their integration to achieve high-quality and high-performance electronic devices. To integrate and miniaturize multiple semiconductors, thin and precise wafers are essential. The backgrinding process, which involves high-precision processing, is necessary to achieve this. The backgrinding system is used to grind and polish the back side of the wafer to reduce its thickness to ㎛ units. This enables the high integration and miniaturization of semiconductors and a flattening process to allow for detailed circuit design, ultimately leading to the production of IC chips. As the backgrinding system performs precision processing at the ㎛ unit, it is crucial to determine the stability of the equipment's rigidity. Additionally, the flatness and surface roughness of the processed wafer must be checked to confirm the processability of the backgrinding system. IIn this paper, the goal is to verify the processability of the back grinding system by analyzing the natural frequency and resonance frequency of the equipment through computer simulation and measuring and analyzing the flatness and surface roughness of wafers processed with backgrinding system. It was confirmed whether processing damage occurred due to vibration during the backgrinding process.

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

강합성 플레이트거더교의 가로보 배치에 관한 연구 (A Study on the Disposition of Cross Beams in Composite Plate Girder Bridge)

  • 박용명;백승용;황민오
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.691-699
    • /
    • 2002
  • 본 논문에서는 수직 및 수평 브레이싱을 생략하고 I-형 거더를 가로보만으로 연결한 다주형 강합성 플레이트거더교 형식에서 가로보의 적정 배치 간격 및 소요 휨강성의 산정을 위한 연구를 수행하였다. 이를 위해 지간 40m의 단순교와 40+50+40m의 2차로 4주형 연속교를 예제교량으로 시산 설계하였다. 본 교량에 대해 중간가로보의 배치 간격과 휨강성를 매개변수로 하여 합성전 후 고정하중, 활하중 및 지진하중을 포함하는 설계하중에 대한 응력 해석을 수행한 후 강재 주형 및 라로보의 격자구조에 대해 합성전 고정하중을 고려한 재료-기하비선형해석으로부터 횡비틀림 좌굴강도를 평가하였다. 이상의 두 가지 국면 해석 결과를 토대로 단부 및 중간가로보의 적정 배치 간격과 소요 휨강성을 제안하였다.

신합섬직물의 역학적특성과 태에 관한 연구(I) (The Study on Mechanical Properties and Handle of the Micro-Fiber Fabrics(I))

  • 박명수;최영미
    • 한국염색가공학회지
    • /
    • 제11권2호
    • /
    • pp.9-18
    • /
    • 1999
  • In order to establish fundamental data for the betterment of Polyester microfiber fabric handle, a study by using fixed warp of ITY yarn samples with P/F, DTY, and ITY weft yarns was performed. For this purpose the samples of total 27 kinds were prepared. That is, each sample yarn was twisted in three ways and for each twisted yarn the fabric structures were modified in three ways, plain, twill, and satin. The examination was done by focusing on the point of the change of handles and the characteristics of the mechanical properties of the samples with the change of yarn and the fabric structure. The handles and the mechanical properties were examined with the KES-F system suggested by Kawabata. The results were as follows : 1. WT and MIU increased with increasing the twist. By comparing WT and MIU by yarn, DTY was higher than P/F. It appeared that twill and satin were higher than plain. 2. The bending rigidity change in DTY with increasing the twist was not significant, however in P/F it appeared apparently decreased with increasing the tlvist. Also, it appeared that when using P/F as weft the bending rigidity was higher than when using DTY and the twill structure appeared higher than the satin structure. 3. In shear force the increasing rates of plain and the twill were higher than satin. When DTY and P/F were used as weft, the shear force was higher in ITY and DTY than in P/F case. 4. Koshi appeared higher in the order of plain, twill and satin. When DTY and P/F were used as the weft Koshi increased with increasing the twist in plain, however in twill and satin it appeared to decrease. In hand value ITY(=7.5) appea.ed to be highe. than DTY and P/F(=6.5). 5. In all cases Shinayakasa decreased with increasing the twist. The hand values observed that satin was =4, twill was =3, and plain was =1.5. 6. Fukurami showed no significant change with increasing the twist in DTY, however in P/F and ITY it decreased.

  • PDF

견직물(絹織物)의 물리적(物理的) 특성(特性) 변화(變化)에 대(對)한 연구(硏究) - 굽힘 및 광택(光澤) 특성(特性)- (A Study on the Physical Properties of Silk Fabrics - Bending and Luster Properties -)

  • 박신정;김종준;전동원
    • 패션비즈니스
    • /
    • 제8권5호
    • /
    • pp.31-40
    • /
    • 2004
  • The purpose of this study is to investigate the change of the physical properties, bending and luster properties, which are related to the touch and appearance of silk fabrics modified by the degumming process. The silk has long been known as one of the most elegant and soft textile materials. The raw silk yarn, or cocoon bave, spun from the spinneret, is rather stiff due to the sericin covering the two fibroins together. The sericin can be removed during a degumming process. The removal of the sericin would result in remarkable change in the physical properties of the raw silk fabrics, including luster of the fabrics, which process parameters could possibly be utilized to adequately control the silk fabric properties. The KES(Kawabata Evaluation System) is a testing methodology that has been used with considerable success for predicting the hand and tailorability of apparel fabrics. This study uses one of the KES, bending tester, to measure the bending properties of the silk fabrics degummed for specified period to change the physical/mechanical properties of the fabric. The KES bending measurement revealed that the bending rigidity decreased for both the warp and weft direction of the silk fabrics with the increase of the degumming period. It has been shown in this study that the some of the hand-related physical properties, including the bending rigidity, drapability, and luster, could be modified with the change in the degumming period.

기계편용 장식사 니트소재의 물성 및 감성 평가 (Physical and Hand Properties of the Knitted Fabrics From Machine Knitting Fancy Yarns)

  • 박기윤;박명자
    • 한국의상디자인학회지
    • /
    • 제10권2호
    • /
    • pp.125-138
    • /
    • 2008
  • For physical and hand property evaluation of fabrics, the knitted fabrics from 11 types of machines knitting fancy yarns, boucle (M1), knot (M2), snarl (M3), and slub (M4), tamtam (M5), tubular (M6), fur 1 (M7), bead (M8), fur 2 (M9), fur 3 (M10), and ladder (M11) yarns, were prepared with 7-10 G plain stitch. Washing test and pilling test had also been carried out. For hand properties by objective sensibility evaluation, 17 items of sir mechanical properties using KES-FB (Kawabata Evaluation System) had been measured. Then hand values of knitted fabrics were calculated with a calculation formula, namely KN-402-KT. Finally the total hand values were obtained through KN-301-WINTER. As a result of physical properties and objective evaluation for machines knitting fancy fabrics, most of them shrank in the direction of wale and course after the washing test, in which their shrinkage rate had a maximum of 3.5%. Therefore, the washing test indicated that the shrinkage ratio of knitted fabrics had a minor change. The results of the pilling test are mostly 4-5th grade, and all of the machines knitting fancy fabrics showed good results in the pilling resistance. In hand properties and objective sensibility evaluation, twisted fancy yarns, such as boucle (M1), knot (M2), snarl (M3), and slub (M4), were superior to bonding rigidity (B) and shear rigidity (G). The surface property between course and wale differs in all samples and course direction is tougher than wale direction. FUKURAMI (fullness and softness) of all samples have high values, besides NUMERI (smoothness) of tamtam (M5) and boucle (M1), which were rather good. Most samples except fur 1 (M7) had low KOSHI (stiffness) value. The total hand value (THV) of twisted yarns was low. This study proves that manufacturers, who plan knitting yarn products and knit fashion, can apply these data to develop machines knitting yarns and knits that fit the consumers' demands.

  • PDF

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF