• 제목/요약/키워드: System Loss Factor

검색결과 589건 처리시간 0.031초

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Byun, Jae-Ki;Choi, Young-Don;Choi, Yoon;Hong, Ki-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes energy loss in a pipe line of refuse collecting system. Analysis of energy loss in a pipe line is the decisive factor in a design of refuse collecting system. Using the results of energy loss analysis, we can determine the power of turbo-blower. The flow characteristics of the pipe line with refuse bags were analyzed by three-dimensional CFD. The refuse bag is modeled by using the shape obtained from profile measurement. Friction factors were calculated with changing the refuse bag size, mixing ratio and Reynolds number. And drag coefficients were calculated using the CFD results. From the results we can calculate energy loss in a pipe line of refuse collecting system and predict the capacity of turbo-blower.

Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System (6.78MHz, 거리 60cm, 50W급 무선 전력 전송 시스템용 High Quality Factor PCB 코일 개발)

  • Lee, Seung-Hwan;Yi, Kyung-Pyo
    • Journal of the Korean Society for Railway
    • /
    • 제19권4호
    • /
    • pp.468-479
    • /
    • 2016
  • In order to supply power to online monitoring systems that are attached to high voltage catenary or overhead wires, a wireless power transfer system is required that is able to transmit power over the insulation gap. Such wireless power transfer systems have transmitter and receiver coils that have diameters of over 10cm. This paper focused on an investigation of the sources of loss in the coils when the coils are fabricated using printed circuit board technology. Using finite element simulation results, it has been shown that the dielectric loss in the substrate was the dominant source of the total loss. It has been demonstrated that the selection of a proper dielectric material was the most critical factor in reducing the loss. For further reduction of the loss, the distributed tuning capacitor method and the slotting of the inter-turn spaces have been proposed. For the evaluation of the proposed methods, four coils have been fabricated and their equivalent series resistances and quality factors were measured. Measured quality factors were greater than 300, which means that these devices will be helpful in achieving high coil-to-coil efficiency.

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • 제11권2호
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

Behavior of the Flexural Vibration of a Sandwich Beam with Partially Inserted Viscoelastic Layer (점탄성층이 부분적으로 삽입된 샌드위치보의 횡진동 특성)

  • 박진택;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.167-170
    • /
    • 2000
  • The flexural vibration of a sandwich beam with partially inserted viscoelastic layer has been studied using the finite element analysis in combination with an experiment. Effects of length and thickness of partial viscoelastic layers on system loss factor(${\eta}_s$) and resonant frequency(${\omega}_r$) were considerably large. The thicker the viscoelastic layer in a sandwich beam, the larger the system loss factor in Mode 1 as compared with that in Mode 2. The loss factor increased almost linearly with increasing the length of partial viscoelastic layer. Effects of thickness of beams were also considered.

  • PDF

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제26권3호
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

Analysis of Loss Compensation Efficiency Factor in the Uniform Price Market (단일가격시장에서 손실보상효율계수의 특성 분석)

  • Hahn, Tae-Kyung;Kim, Jin-Ho;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권5호
    • /
    • pp.871-881
    • /
    • 2010
  • In the uniform price electricity market or bilateral electricity market, the energy transactions in which the network is not considered and ISO's system operation costs which ISO try to minimize are settled separately. In this paper, transmission loss, one of the ISO's system operation costs, was dealt. The conventional marginal loss allocation method gives economic signals but three aspects have to be considered; excessiveness, arbitrariness and cross-subsidy. In this paper, marginal loss compensation efficiency method was suggested which consider those aspects of the conventional marginal loss allocation method. Also the characteristics of the marginal loss compensation efficiency were analyzed in the appendixes. And simple 2-bus system and IEEE 14 bus system were used to explain these characteristics.

Opposition Based Differential Evolution Algorithm for Capacitor Placement on Radial Distribution System

  • Muthukumar, R.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.45-51
    • /
    • 2014
  • Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.

The Optimal Condenser Position & Capacity for Power Factor Compensation in Distribution System (배전계통의 역률보상 콘덴서의 최적 위치 및 용량 산정)

  • Jang, Jeong-Tae;Jeon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제48권10호
    • /
    • pp.1190-1197
    • /
    • 1999
  • The management of power factor(PF) in the distribution line is treated according to the measurement a month about the feeder unit at the substation. In Korea, we have not researched into power factor in distribution system due to it's less weight. The reactive power in advanced countries is controlled automatically by the compensative condenser switch on/off under the monitoring. This paper first presents the optimal condenser position and proper capacity by lagrangue factor ${\lambda}_{Q}$ which is the line loss index about reactive power unit. Therefore, the largest ${\lambda}_{Q}$ node is the condenser injection point and we find out the best condenser capacity when the line loss is saturated by the moderation of condenser volume. By this method, we suggest 0.6% uprising PF by injection of 15 kVA condenser. Additionally, PF is analysed into 5 areas; large city, middle city, small city, farm village, fishing village by the use of Power Platform which is classified the same concept of the low load management in KEPCO. Two feeders of each area are selected by the worst results of PF in specified areas.

  • PDF