• Title/Summary/Keyword: System Impedance Curve

Search Result 34, Processing Time 0.03 seconds

A Numerical Analysis on the System Impedance in a Fan Cooling System (Fan 냉각장치에서 System 저항에 관한 수치해석)

  • Kim, Dong-Il;Bok, Ki-So;Lee, Seung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1424-1429
    • /
    • 2004
  • To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance and it has been usually examined with the fan tester(wind tunnel) based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated.

  • PDF

The influence of impedance on micro electrochemical machining (마이크로 전해가공에서 임피던스의 영향)

  • 강성일;주종길;박규열;전종업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1893-1896
    • /
    • 2003
  • This research aimed to fabricate a micro structure using micro electrochemical machining (${\mu}$-ECM). with a view to that the theory of ${\mu}$-ECM is established accurately in a different way of conventional electrochemical machining. In details, if the impedance is existed in the system, it is difficult to analyze the micro electrochemical reaction efficiently in polarization curve using a potentiodynamic test. Hence, this research investigates the relationships between impedance and electric current measuring with a potentiostatic test applying to a pair or electrode as a constant potential. And this paper examines the influence of temperature of electrolyte on polarization curve for the quantitative analysis of electrochemical reactions.

  • PDF

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

Development of a Battery Monitoring Technology using Its Impedance (임피던스를 이용한 배터리 모니터링 기술)

  • Shim, Jae-Hong;Kim, Jae-Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.25-29
    • /
    • 2011
  • Emerging demands for rechargeable battery for various applications needs more effective battery management system such as the prediction of the usable time about a battery. Many prediction methods have been suggested but none of them come into bounds of reliability. In this paper, we proposed a new prediction algorithm for the remaining capacity of a rechargeable battery by using the transformed curve based on its impedance. Hardware for monitoring a battery was designed and made. Through a series of experiment, we showed the effectiveness of the proposed prediction algorithm of a battery's remaining capacity.

Acoustic and Electrical Analysis of Microspeaker for Mobile Phones (모바일 폰용 마이크로스피커의 음향 및 전기 해석)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.525-536
    • /
    • 2014
  • In this paper, GUI program for microspeaker system simulation program was developed and verified through closed box, vent box and 6th order bandpass enclosure system. By using the pseudo loudspeaker model concept, TS parameters and rear volume of microspeaker were identified. Their suitabilities were proved by comparing test results with simulations of electrical impedance and sound pressure response curves for the three box types; closed box, vent box and 6th order bandpass box. Also, MSSP was found to be effective regardless of the microspeaker's shape, either circular or rectangular shape. MSSP can be used for the microspeaker system simulation, and can give a general prediction of such as; sound pressure level curve, electrical impedance, diaphragm velocity and displacement curve according to multiple design parameters; diaphragm mass, compliance, force factor, front and rear volume, front and rear port's diameter and length.

Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow (유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측)

  • 이정권;박철민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF

Analysis of Soil lonization Characteristics in Concentric Cylindrical Electrode System under Impulse Voltages (임펄스전압에 의한 동심원통형 전극계에서 토양 이온화특성 분석)

  • Kim, Hoe-Gu;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.32-39
    • /
    • 2008
  • This paper presents the soil ionization phenomena and the parameters with the transient characteristics of model grounding system under lightning impulse voltages. lonization properties of dry and wet sands were investigated by using two test cells of concentric cylindrical electrode system with different dimensions. As a result non-linear electrical behavior of sand under high impulse voltage is caused by ionization process. The transient impedance of sand depends not only on the water content but also on the magnitude of applied impulse voltages. The grounding impedance is decreased with increasing the water content and the magnitude of a lied voltages. The results resented in this paper will provide useful information on the design of high performance grounding systems against lightning surge.

Analysis of Tram Feeding System according to Train Diagram Change (열차운행 시격 변경에 따른 트램 급전계통 해석)

  • Kim, Dong-Man;Chang, Chin-Young;Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.634-639
    • /
    • 2015
  • In order to understand phenomenon of the electric railway power feeding system in the construction planning step, analysis of the overall system including electric characteristic of electric railway power feeding system, train running characteristic and power consumption pattern and train operation plan and gradients of railroad and curve radius is required. This paper study the feeder system by analysis of comprehensive system according to train operation plans, line impedance, running characteristic of train, electrical properties of the feeder system. In order to understand phenomenon to the feeder system of tram exactly regarding export of the field railroad preceeding actively recently.

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

A Modelling Method of a High Impedance Fault in a Distribution System as a Voltage Source using EMTP (EMTP를 이용한 전압원으로의 배전계통 고저항 사고 모델링 기법)

  • Kang, Yong-Choel;Nam, Soon-Ryul;Park, Jong-Keun;Jang, Sung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1388-1393
    • /
    • 1999
  • A more reliable algorithm for detecting a high impedance fault (HIF) requires fault currents at the relaying point containing information of load condition as well as HIF characteristics. This paper presents a modeling method of an HIF in a distribution system using EMTP. From the voltage and current waveforms of HIF experiment, the voltage-current characteristic is obtained and then piecewise linearized. The proposed method gets several points on the linearized voltage-current curve and then represents nonlinearity as piecewise linear resistances using Transient Analysis of Control Systems (TACS) in EMTP. Thus, an HIF is represented as a voltage source in the first and third quadrants of voltage-current plane. The method is implemented in EMTP and thus the voltage and current at the relaying point can be obtained when an HIF occurs. In this paper, an HIF was simulated on various load conditions and fault conditions in 22.9 [kV] distribution systems.

  • PDF