• Title/Summary/Keyword: System Algorithm

Search Result 24,015, Processing Time 0.044 seconds

An Optimal Parameter Selection of Power System Stabilizer using Immune Algorithm (면역 알고리즘을 이용한 전력 계통 안정화 장치의 최적 파라미터 선정)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Lee, Gwang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.433-445
    • /
    • 2000
  • In this paper, optimal tuning problem of power system stabilizer(PSS) using Immune Algorithm(IA) is investigated to improve power system dynamic stability. In proposed method, objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. An antibody that most fits the antigen is considered as the solution to PSS tuning problem. The computaton performance by the proposed method is compared with Genetic Algorithm(GA). The porposed PSS using IA has been applied for two sample system, single-machine infinite bus system and multi-machine power system. The performance of the proposed PSS is compared with that of conventional PSS. It is shown that the proposed PSS tuned using immune algorithm is more robust than conventional PSS.

  • PDF

Model-Based Tabu Search Algorithm for Free-Space Optical Communication with a Novel Parallel Wavefront Correction System

  • Li, Zhaokun;Zhao, Xiaohui;Cao, Jingtai;Liu, Wei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In this study, a novel parallel wavefront correction system architecture is proposed, and a model-based tabu search (MBTS) algorithm is introduced for this new system to compensate wavefront aberration caused by atmospheric turbulence in a free-space optical (FSO) communication system. The algorithm flowchart is presented, and a simple hypothetical design for the parallel correction system with multiple adaptive optical (AO) subsystems is given. The simulated performance of MBTS for an AO-FSO system is analyzed. The results indicate that the proposed algorithm offers better performance in wavefront aberration compensation, coupling efficiency, and convergence speed than a stochastic parallel gradient descent (SPGD) algorithm.

PThe Robust Control System Design using Intelligent Hybrid Self-Tuning Method (지능형 하이브리드 자기 동조 기법을 이용한 강건 제어기 설계)

  • 권혁창;하상형;서재용;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • This paper discuss the method of the system's efficient control using a Intelligent hybrid algorithm in nonlinear dynamics systems. Existing neural network and genetic algorithm for the control of non-linear systems work well in static states. but it be not particularly good in changeable states and must re-learn for the control of the system in the changed state. This time spend a lot of time. For the solution of this problem we suggest the intelligent hybrid self-tuning controller. it includes neural network, genetic algorithm and immune system. it is based on neural network, and immune system and genetic algorithm are added against a changed factor. We will call a change factor an antigen. When an antigen broke out, immune system come into action and genetic algorithm search an antibody. So the system is controled more stably and rapidly. Moreover, The Genetic algorithm use the memory address of the immune bank as a genetic factor. So it brings an advantage which the realization of a hardware easy.

  • PDF

THE STUDY OF OPTIMAL BUFFER ALLOCATION IN FMS USING GENETIC ALGORITHM AND SIMULATION

  • Lee, Youngkyun;Kim, Kyungsup;Park, Joonho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.263-268
    • /
    • 2001
  • In this paper, we present a new heuristic algorithm fur buffer allocation in FMS (Flexible Manufacturing System). It is conducted by using a genetic algorithm and simulation. First, we model the system by using a simulation software, \"Arena\". Then, we apply a genetic algorithm to achieve an optimal solution. VBA blocks, which are kinds of add-in functions in Arena, are used to connect Arena with the genetic algorithm. The system being modeled has seven workstations, one loading/unloading station, and three AGVs (Automated Guided Vehicle). Also it contains three products, which each have their own machining order and processing times. We experimented with two kinds of buffer allocation problems with a proposed heuristic algorithm, and we will suggest a simple heuristic approach based on processing times and workloads to validate our proposed algorithm. The first experiment is to find a buffer profile to achieve the maximum throughput using a finite number of buffers. The second experiment is to find the minimum number of buffers to achieve the desired throughput. End of this paper, we compare the result of a proposed algorithm with the result of a simple buffer allocation heuristic based on processing times and workloads. We show that the proposed algorithm increase the throughput by 7.2%.t by 7.2%.

  • PDF

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

An Analysis and Comparison on Efficiency of Load Distribution Algorithm in a Clustered System (클러스터 시스템의 부하분산 알고리즘의 효율성 비교분석)

  • Kim, Seok-Chan;Rhee, Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.2
    • /
    • pp.111-118
    • /
    • 2006
  • In this thesis, we analyze the efficiency of the algorithm to distribute the load in the clustered system, by comparing with the existed algorithm. PWLC algorithm detects each server's load in the system at weighted period, and following the detection of the loads, a set of weights is given to each server. The system allocates new loads to each server according to its weight. PWLC algorithm is compared with DWRR algorithm in terms of variance, waiting time by varying weighted Period. When the weighted period is too short, the system bears a heavy load for detecting load over time. On the other hand, when the weighted period is too long, the load balancing control of the system becomes ineffective. The analysis shows PWLC algorithm is more efficient than DWRR algorithm for the variance and waiting time.

A Rapid Packing Algorithm for SLS Rapid Prototyping System (SLS 쾌속조형장치를 위한 고속 패킹 알고리즘 개발)

  • 김부영;김호찬;최홍태;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.561-564
    • /
    • 2002
  • With Rapid Prototyping system, the efficient packing in a fixed work volume reduces build time when multiple parts are built in a process. In this paper, an efficient and rapid packing algorithm is developed for SLS system that has cylindrical workspace. A genetic algorithm is implemented to place as many part as possible in a vat. For fast computation, a collision detection algorithm "k-DOPs Tree" is implemented.

  • PDF

Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device (모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘)

  • Shin, Seung-Hyuck;Kim, Hyun-Wook;Park, Chan-Gook;Choi, Sang-On
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

Classification System Model Design for Algorithm Education for Elementary and Secondary Students (초중등학생 대상 알고리즘 교육을 위한 분류체계 모형 설계)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • The purpose of this study is to propose algorithm classification system for algorithm education for Elementary and Secondary Students. We defines the components of the algorithm and expresses the algorithm classification system by the analysis synthesis method. The contents of the study are as follows. First, we conducted a theoretical search on the classification purpose and classification. Second, the contents and limitations of the classification system for the proposed algorithm contents were examined. In addition, we examined the contents and selection criteria of algorithms used in algorithm education research. Third, the algorithm components were redefined using the core idea and crosscutting concept proposed by the NRC. And the crosscutting concept of algorithm is subdivided into algorithm data structure and algorithm design strategy, and its contents are presented using analytic synthesis classification scheme. Finally, the validity of the proposed contents was verified by the review of the expert group. It is expected that the study on the algorithm classification system will provide many implications for the contents selection and training method in the algorithm education.

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.