• Title/Summary/Keyword: System Advisor Model (SAM)

Search Result 3, Processing Time 0.019 seconds

Analysis of Investment Time for a Residential Photovoltaic Power System in China and Thailand Applying a Real Option Model and SAM Data (Real Option 모형과 SAM데이터를 활용한 중국과 태국의 주거용 태양광 투자 시점 분석)

  • Moon, Yongma
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.125-141
    • /
    • 2019
  • This paper provides economic analysis for a residential photovoltaic (PV) power system of 5 districts in China and Thailand, using SAM (System Advisor Model) data. Unlike existing literature, the analysis is conducted from the investment timing perspective, as applying to a real option model which can incorporate the cost uncertainty of the PV system and a resident's option to delay the investment. This study shows that the gap of optimal investment times between a real option model and a generally used net present value model ranges from about 6 to 14 years. Also, we found a contracting result for a particular district that, while the investment is appropriate according to the net present value model, it is more reasonable to delay the PV system investment in terms of the real option model.

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Analysis of Photovoltaic Potential of Unused Space to Utilize Abandoned Stone Quarry (폐채석장 부지 활용을 위한 유휴 공간의 태양광 발전 잠재량 분석)

  • Kim, Hanjin;Ku, Jiyoon;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.534-548
    • /
    • 2021
  • In this paper, the feasibility of generating solar power near an abandoned quarry is examined with the objectives of resolving the essential problems that quarries encounter, such as rockfalls and space usage issues. On an abandoned quarry site in Sadang, Seoul, Republic of Korea, two different PV installation methods were analyzed. The first is attaching PV directly on the quarry slope. Since there are no corresponding safety standards and precedents for installing solar panels directly on slopes, the power generation potential was calculated by using topographic data and reasonable assumptions. The surface area of cut slope section was extracted from the Digital Elevation Model(DEM) via ArcGIS and Python programming to calculate the tilt and power capacity of installable panels. The other approach is installing PV as a rockfall barrier, and the power generation potential was analyzed with the assumption that the panel is installed in the direction of facing solar irradiation. For the derivation of power generation, the renewable energy generation analysis program SAM(System Advisor Model) was used for both methods. According to the result, quarries that have terminated resource extraction and remain devastated have the potential to be transformed into renewable energy generation sites.