• Title/Summary/Keyword: Synthetic heat affected zone

Search Result 2, Processing Time 0.017 seconds

Thermal Fatigue Properties of Synthetic Beat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강의 재현 용접열영향부 열피로 특성)

  • Hong, S.G.;Cho, M.H.;Kang, K.B.
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • Ferritic stainless steel, which has been used as material for decoration parts in automobile, is recently used as material for the exhaust system due to its good performance at high temperature. To improve the fuel efficiency and purify automotive exhaust gas, it is needed to increase the temperature of exhaust gas. However, it is frequently reported that the rising of the temperature of exhaust gas increases thermal stress at exhaust manifold, which results in thermal fatigue failure in welded joints. Therefore, in this study, effects of chemical composition of steel and welding parameters on thermal fatigue properties of synthetic heat affected zone in ferritic stainless steel have been investigated. It has been found that thermal fatigue life in heat affected zone is affected by bead shape of welded joint and amount of soluble Nb in steel. Especially, Nb-Ti added steel has higher thermal fatigue life in comparison to Nb added steel, which is attributed to difference of precipitation behavior in both steels.

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF